×

Deligne’s reciprocity for function fields. (English) Zbl 0932.11040

In 1982, guided by conjectures on special values of \(L\)-functions, P. Deligne [Lect. Notes Math. 900, 9-100 (1982; Zbl 0537.14006)]proved the reciprocity law for the Euler \(\Gamma\)-function as an application of results on Hodge cycles on abelian varieties. In this paper the author presents an analogue of this reciprocity law in the context of the arithmetic of function fields and the theory of Drinfeld modules. Here the reciprocity law is proved for the geometric \(\Gamma\)-function, based on the Carlitz exponential, and uses Anderson’s theory of characteristic \(p\)-solitons.
The author also obtains a finer version of the reciprocity law, which addresses questions of rationality and is the analogue of one of the conjectures in P. Deligne’s paper [Proc. Symp. Pure Math. 33, No. 2, 313-346 (1979; Zbl 0449.10022)].

MSC:

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11R58 Arithmetic theory of algebraic function fields
Full Text: DOI

References:

[1] Anderson, G. W., \(t\), Duke Math. J., 53, 457-502 (1986) · Zbl 0679.14001
[2] Anderson, G. W., A two-dimensional analogue of Stickelberger’s theorem, The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, June 1991 (1992), de Gruyter · Zbl 0797.11056
[3] Bosch, S.; Güntzer, U.; Remmert, R., Non-Archimedean Analysis (1984), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0539.14017
[4] Cassels, J. W.S.; Fröhlich, A., Algebraic Number Theory (1967), Academic Press: Academic Press New York · Zbl 0153.07403
[5] Coleman, R., On the Frobenius endomorphisms of Fermat and Artin-Schreier curves, Proc. Amer. Math. Soc., 102, 463-466 (1988) · Zbl 0666.14014
[6] Deligne, P., Valeurs de fonctions \(L\), Proc. Symposia Pure Math., 33, 313-346 (1979) · Zbl 0449.10022
[7] Deligne, P., Hodge Cycles, Motives and Shimura Varieties. Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math., Vol. 900 (1982), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0465.00010
[8] Fresnel, J.; van der Put, M., Géométrie Analytique Rigide et Applications. Géométrie Analytique Rigide et Applications, Progress in Mathematics, Vol. 18 (1981), Birkhäuser: Birkhäuser Basel · Zbl 0479.14015
[9] Gross, B. H.; Koblitz, N., Gauss sums and the \(pΓ\), Ann. of Math., 109, 569-581 (1979) · Zbl 0406.12010
[10] Goss, D., The \(Γ\), Duke Math. J., 56, 163-191 (1988) · Zbl 0661.12006
[11] Hayes, D. R., Explicit class field theory for rational function fields, Trans. Amer. Math. Soc., 189, 77-91 (1974) · Zbl 0292.12018
[12] Hayes, D. R., Hecke characters and Eisenstein reciprocity in function fields, J. Number Theory, 43, 251-292 (1993) · Zbl 0774.11028
[13] Markushevich, A. I., Entire Functions (1966), American Elsevier: American Elsevier New York · Zbl 0136.37801
[14] Serre, J.-P., Local Fields (1979), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0423.12016
[17] Thakur, D. S., Gamma functions for function fields and Drinfel’d modules, Ann. of Math., 134, 25-64 (1991) · Zbl 0734.11036
[18] Thakur, D. S., On gamma functions for function fields, (Goss, D., The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, June 1991 (1992), de Gruyter) · Zbl 0804.11041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.