×

Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers’ equations. (English) Zbl 0929.60062

Summary: We prove existence and uniqueness for two classes of martingale problems involving a nonlinear but bounded drift coefficient. In the first class, this coefficient depends on the time \(t\), the position \(x\) and the marginal of the solution at time \(t\). In the second, it depends on \(t,x\) and \(p(t,x)\), the density of the time marginal w.r.t. Lebesgue measure. As far as the dependence on \(t\) and \(x\) is concerned, no continuity assumption is made. The results, first proved for the identity diffusion matrix, are extended to bounded, uniformly elliptic and Lipschitz continuous matrices. As an application, we show that within each class, a particular choice of the coefficients leads to a probabilistic interpretation of generalizations of Burgers’ equation.

MSC:

60J60 Diffusion processes
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)

References:

[1] BOSSY, M. and TALAY, D. ( 1996). Convergence Rate for the Approximation of the limit law of weakly interact ing particles: Application to the Burgers Equation. Ann. Appl. Prob. 6 818-861. Zbl0860.60038 MR1410117 · Zbl 0860.60038 · doi:10.1214/aoap/1034968229
[2] COLE, J. D. ( 1951). On a quasi-linear parabolie equation occuring in aerodynamics. Quart. Appl. Math. 9 225-236. Zbl0043.09902 MR42889 · Zbl 0043.09902
[3] FRIEDMAN, A. ( 1975). Stochastic Differential Equations and Applications. Academic Press. Zbl0323.60056 · Zbl 0323.60056
[4] GRAHAM, C. ( 1992). Nonlinear diffusions with jumps. Ann. Inst. Henri Poincaré. 28 393-402. Zbl0756.60098 MR1183993 · Zbl 0756.60098
[5] HOPF, E. ( 1950). The partial differential equation ut + uux = \mu uxx. Comm. Pure Appl. Math. 3 201-230. Zbl0039.10403 MR47234 · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[6] KARATZAS, I. and SHREVE, S. E. ( 1988). Brownian Motion and Stochastic Calculus. Springer-Verlag. Zbl0638.60065 MR917065 · Zbl 0638.60065
[7] MÉLÉARD, S. and ROELLY-COPPOLETTA, S. ( 1987). A propagation of chaos result for a system of particles with moderate interaction. Stochastic Processes and their Application. 26 317-332. Zbl0633.60108 MR923112 · Zbl 0633.60108 · doi:10.1016/0304-4149(87)90184-0
[8] MEYER, P. A. ( 1966). Probabilités et Potentiel. Hermann. Zbl0138.10402 MR205287 · Zbl 0138.10402
[9] OELSCHLÄGER, K. ( 1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw, Geb. 69 279-322. Zbl0549.60071 MR779460 · Zbl 0549.60071 · doi:10.1007/BF02450284
[10] SZNITMAN, A. S. ( 1991). Topics in propagation of chaos. École d’été de probabilités de Saint-Flour XIX - 1989. Lect. Notes in Math, 1464. Springer-Verlag. Zbl0732.60114 MR1108185 · Zbl 0732.60114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.