×

Some results on defining sets of \(t\)-designs. (English) Zbl 0927.05006

The authors investigate the smallest number \(s_t\) of blocks identifying a not necessarily simple \(t\)-\((v,k,\lambda_t)\) design \({\mathcal D}\). Such a multiset of blocks identifying \({\mathcal D}\) is called a defining set. The authors use trades, i.e. a pair of families of \(k\)-subsets both covering each \(t\)-subset equally often, to derive bounds for \(s_t\). An interesting bound is \(s_s\geq s_t+ 2^{t-s}-1\), where \(s_s\) is the number of blocks in a smallest defining set of \({\mathcal D}\) when \({\mathcal D}\) is considered as an \(s\)-design for \(0<s<t\). Further bounds concern the block fraction needed for a smallest defining set for \(v\leq 8\) and for Steiner designs.

MSC:

05B05 Combinatorial aspects of block designs
05B15 Orthogonal arrays, Latin squares, Room squares
Full Text: DOI

References:

[1] Sarvate, Bull. Inst. Combin. Appl. 10 pp 26– (1994)
[2] Mathon, CRC Handbook of Combinatorial Designs pp 3– (1996)
[3] Greenhill, Utilitas Math. 48 pp 5– (1995)
[4] Gray, Utilitas Math. 38 pp 97– (1990)
[5] Gray, Australas. J. Combin. 1 pp 91– (1990)
[6] Gray, Bull. Austral. Math. Soc. 41 pp 97– (1990)
[7] Gray, Bull. Inst. Combin. Appl. 21 pp 91– (1997)
[8] Gray, Australas. J. Combin. 16 pp 87– (1997)
[9] Engel, Ars Combin. 17 pp 33– (1984)
[10] DOI: 10.1016/0097-3165(84)90084-0 · Zbl 0531.05024 · doi:10.1016/0097-3165(84)90084-0
[11] Billington, Congr. Numer. 92 pp 33– (1993)
[12] Mathon, Ars Combin. 4 pp 309– (1977)
[13] Langdev, Mathematics and mathematical education (Bulgarian) (Albena, April 6–10, 1989) pp 386– (1989)
[14] Khosrovshahi, Ars Combin. 32 pp 115– (1991)
[15] Khodkar, J. Combin. Math. Combin. Comput. 17 pp 209– (1994)
[16] Keedwell, Congr. Numer. 113 pp 231– (1996)
[17] DOI: 10.1016/0378-3758(86)90131-X · Zbl 0593.62071 · doi:10.1016/0378-3758(86)90131-X
[18] Hedayat, Coding theory and design theory, part II: Design theory 21 pp 101– (1990) · doi:10.1007/978-1-4615-6654-0_9
[19] Grüttmüller, Australas. J. Combin. 14 pp 181– (1996)
[20] Gronau, Ann. Discrete Math. 26 pp 209– (1985)
[21] DOI: 10.1007/BF01215371 · Zbl 0264.05009 · doi:10.1007/BF01215371
[22] Street, CRC Handbook of Combinatorial Designs pp 474– (1996)
[23] Street, Combinatorics advances pp 307– (1995) · doi:10.1007/978-1-4613-3554-2_22
[24] Morgan, Ars Combinatoria 3 pp 233– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.