×

A mixed spectral/wavelet method for the solution of the Stokes problem. (English) Zbl 0926.76083

Summary: We present a mixed wavelet/spectral Chebychev method for solving the unsteady two-dimensional Stokes equations in the vorticity-stream function formulation with periodicity condition in one direction. After an appropriate time discretisation of the equations, one has to solve at each time step a stationary Stokes-like problem. A capacitance matrix method is used to eliminate the problem of boundary conditions. This leads to solving a series of Helmholtz problems. The spatial discretisation makes use of the wavelet method in the periodic direction and the spectral collocation Chebychev method in the non-periodic direction. The resolution of the discrete Helmholtz problem is done by means of the diagonalisation technique in the nonperiodic direction. The system then splits into a sequence of one-dimensional periodic Helmholtz problems which are efficiently inverted using FFTs. Numerical tests show both the stability and the accuracy of the method. \(\copyright\) Academic Press.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Daubechies, I., Orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909 (1988) · Zbl 0644.42026
[2] Garba, A., Methodes Spectrales en Domaines non rectangulaires, Applications aux écoulements à surface libre, Thèse de l’université (1993)
[3] A. Garba, Une méthode de collocation à base d’ondelettes pour la résolution d’équations aux dérivée partielles, ICTP, Trieste, Italy, 1996; A. Garba, Une méthode de collocation à base d’ondelettes pour la résolution d’équations aux dérivée partielles, ICTP, Trieste, Italy, 1996
[4] Amaratunga, K.; Williams, J., Wavelet-Galerkin solutions for the one-dimensional partial differential equations, Int. J. Numer. Methods Eng., 37, 2703 (1994) · Zbl 0813.65106
[5] Weinam, E.; Jian-Guo, Liu, Vorticity boundary condition and related issues for finite differences schemes, J. Comput. Phys., 124, 368 (1996) · Zbl 0847.76050
[6] Quartapelle, L., Numerical Solution of the Incompressible Navier-Stokes Equations (1993) · Zbl 0784.76020
[7] Kleiser, L.; Schumann, U., Treatment of the incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows, Proc. 3rd GAMM Conf. Numerical Methods in Fluid Mechanics, 165 (1980) · Zbl 0463.76020
[8] Nguyen, H. D.; Paik, S.; Chung, J. N., Application of the vorticity integral conditioning to Chebychev pseudospectral formulation for the Navier-Stokes equations, J. Comput. Phys., 106, 115 (1993) · Zbl 0769.76049
[9] Tuckerman, L., Divergence-free velocity in nonperiodic geometries, J. Comput. Phys., 80, 403 (1989) · Zbl 0668.76027
[10] Le Quéré, P.; de Rocquefort, Aziary, Sur une méthode semi-implicite pour la résolution des équations de Navier-Stokes d’un écoulement visqueux incompressible, C. R. Acad. Sci. Paris Sér. II, 294, 941 (1982) · Zbl 0489.76037
[11] J. M. Vanel, P. Bontoux, R. Peyret, A pseudospectral solution of vorticity-stream function equations using the influence matrix technique, Numerical Methods for Fluid Dynamics II, K. W. MoronM. J. Baines, Clarendon, Oxford, 1986, 463; J. M. Vanel, P. Bontoux, R. Peyret, A pseudospectral solution of vorticity-stream function equations using the influence matrix technique, Numerical Methods for Fluid Dynamics II, K. W. MoronM. J. Baines, Clarendon, Oxford, 1986, 463 · Zbl 0606.76030
[12] Ehrenstein, U.; Peyret, R., A Chebychev collocation method for the Nanier-Stokes equations with application to double-diffusion convection, Int. J. Numer. Methods Fluids, 9, 427 (1989) · Zbl 0665.76107
[13] Haldenwang, P.; Labrosse, G.; Aboudi, S.; Deville, M., Chebychev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation, J. Comput. Phys., 55, 115 (1984) · Zbl 0544.65071
[14] Haidvogel, D. B.; Zang, T. A., The accurate solution of Poisson’s equation by expansion in Chebychev polynomials, J. Comput. Phys., 30, 167 (1979) · Zbl 0397.65077
[15] Latto, A.; Resnikoff, H.; Tenenbaum, E., The evaluation of connection coefficients of compactly supported wavelets, Proc. French-U.S.A. Workshop on Wavelets and Turbulance, Princeton Univ., June 1991 (1992)
[16] Gottlieb, D.; Lustman, L., The spectrum of the collocation operator for the heat equation, SIAM J. Numer. Anal., 20, 909 (1983) · Zbl 0537.65085
[17] Glowinski, R.; Pironneau, O., Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Rev., 17, 167 (1979) · Zbl 0427.65073
[18] Dean, E. J.; Glowinski, R.; Pironneau, O., Iterative solution of the stream function-vorticity formulation of the Stokes problem, application to the numerical simulation of incompressible viscous flow, Comput. Methods Appl. Mech. Eng., 81, 117 (1991) · Zbl 0760.76044
[19] Qian, S.; Weiss, J., Wavelets and the numerical solution of boundary value problems, Appl. Math. Lett., 6, 47 (1993) · Zbl 0769.65083
[20] Qian, S.; Weiss, J., Wavelets and the numerical solution of partial differential equations, J. Comput. Phys., 106, 155 (1993) · Zbl 0771.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.