×

Inhomogeneous contact processes on trees. (English) Zbl 0924.60083

Summary: We consider an inhomogeneous contact process on a tree \(\mathbb{T}_k\) of degree \(k\), where the infection rate at any site is \(\lambda\), the death rate at any site in \(S\subset \mathbb{T}_k\) is \(\delta\) (with \(0< \delta\leq 1\)) and that at any site in \(\mathbb{T}_k- S\) is 1. Denote by \(\lambda_c (\mathbb{T}_k)\) the critical value for the homogeneous model (i.e., \(\delta=1\)) on \(\mathbb{T}_k\) and by \(\theta (\delta, \lambda)\) the survival probability of the inhomogeneous model on \(\mathbb{T}_k\). We prove that when \(k>4\), if \(S= \mathbb{T}_\sigma\), a subtree embedded in \(\mathbb{T}_k\), with \(1\leq \sigma\leq \sqrt{k}\), then there exists \(\delta_c^\sigma\) strictly between \(\lambda_c (\mathbb{T}_k)/ \lambda_c(\mathbb{T}_\sigma)\) and 1 such that \(\theta (\delta, \lambda_c (\mathbb{T}_k)) =0\) when \(\delta> \delta_c^\sigma\) and \(\theta (\delta, \lambda_c (\mathbb{T}_k))>0\) when \(\delta< \delta_c^\sigma\); if \(S= \{o\}\), the origin of \(\mathbb{T}_k\), then \(\theta (\delta, \lambda_c (\mathbb{T}_k))=0\) for any \(\delta\in (0,1)\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] M. Aizenman and G. R. Grimmett, Strict monotonicity for critical points in percolation and ferromagnetic models,J. Stat. Phys. 63:817–835 (1991). · doi:10.1007/BF01029985
[2] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models,J. Stat. Phys. 36:107–143 (1984). · Zbl 0586.60096 · doi:10.1007/BF01015729
[3] D. J. Barsky and C. C. Wu, Critical exponents for the contact process under the triangle condition, Submitted toJ. Stat. Phys. (1996). · Zbl 0919.60087
[4] C. E. Bezuidenhout and G. R. Grimmett, The critical contact process dies out,Ann. Probab. 18:1462–1482 (1990). · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[5] C. E. Bezuidenhout and G. R. Grimmett, Exponential decay for subcritical contact and percolation processes,Ann. Probab. 19:984–1009 (1991). · Zbl 0743.60107 · doi:10.1214/aop/1176990332
[6] G. R. Grimmett and C. M. Newman, Percolation in + 1 dimensions, InDisorder in Physical Systems (G. R. Grimmett and D. J. A. Welsh, eds.), pp. 167–190 (Clarendon Press, Oxford, 1990).
[7] T. M. Liggett, Multiple transition points for the contact process on binary trees,Ann. Probab. 24:1675–1710 (1996). · Zbl 0871.60087 · doi:10.1214/aop/1041903202
[8] N. Madras, R. Schinazi, and R. H. Schonmann, On the critical behavior of the contact process in deterministic inhomogeneous environments,Ann. Probab. 22:1140–1159 (1994). · Zbl 0821.60091 · doi:10.1214/aop/1176988598
[9] G. Morrow, R. Schinazi, and Y. Zhang, The critical contact process on a homogeneous tree,J. Appl. Probab. 31:250–255 (1994). · Zbl 0798.60091 · doi:10.2307/3215251
[10] C. M. Newman and C. C. Wu, Percolation and contact processes with low-dimensional inhomogeneity, to appear inAnn. Probab. (1997). · Zbl 0901.60074
[11] R. Pemantle, The contact process on trees,Ann. Probab. 20:2089–2116 (1992). · Zbl 0762.60098 · doi:10.1214/aop/1176989541
[12] A. M. Stacey, The existence of an intermediate phase for the contact process on trees,Ann. Probab. 24:1711–1726 (1996). · Zbl 0878.60061 · doi:10.1214/aop/1041903203
[13] C. C. Wu, The contact process on a tree: behavior near the first phase transition,Stochastic Process. Appl. 57:99–112 (1995). · Zbl 0821.60093 · doi:10.1016/0304-4149(94)00080-D
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.