×

Newton-Krylov methods applied to a system of convection-diffusion-reaction equations. (English) Zbl 0923.76199

Summary: We study the application of Newton-Krylov methods for the steady-state solution of the tokamak edge plasma fluid equations. This highly nonlinear system of two-dimensional convection-diffusion-reaction partial differential equations describes the boundary layer of a tokamak fusion reactor. These equations are characterized by multiple time and spatial scales. We use Newton’s method to linearize the nonlinear system of equations resulting from the implicit, finite volume discretization of the governing partial differential equations. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. A variety of preconditioned Krylov iterative techniques are employed to solve these linear systems, and we investigate both standard and matrix-free implementations. A number of pseudo-transient continuation methods are investigated to increase the radius of convergence. While this system of equations describes a specific application, the general algorithm should benefit other applications requiring the solution of general reacting flow type equations.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

CGS
Full Text: DOI

References:

[1] Freund, R., Iterative Solution of Linear Systems, (Acta Numerica (1991)), 57-100 · Zbl 0762.65019
[2] Zhou, L., Krylov Subspace Methods for Linear and Nonlinear Systems, (Ph.D. Thesis (1993), Utah State University)
[3] Wesson, J., Tokamaks (1987), Clarendon Press: Clarendon Press Oxford · Zbl 1111.82054
[4] Smooke, M. D.; Mitchell, R.; Keyes, D., Numerical solution of two-dimensional axisymmetric laminar diffusion flames, Combust. Sci. and Tech., 67, 85-122 (1989) · Zbl 0696.65087
[5] Keyes, D. E., Domain decomposition methods for the parallel computation of reacting flows, Computer Physics Comm., 53, 181-200 (1989) · Zbl 0804.76066
[6] Xu, Y., Numerical Calculations of an Axisymmetric Laminar Diffusion Flame with Detailed and Reduced Reaction Mechanisms, (Ph.D. Thesis (1991), Yale University)
[7] Ern, A., Vorticity-Velocity Modeling of Chemically Reacting Flows, (Ph.D. Thesis (1994), Yale University)
[8] Knoll, D.; McHugh, P., An inexact Newton algorithm for solving the tokamak edge plasma fluid equations on a multiply connected domain, J. Comp. Phys., 116, 281-291 (1995) · Zbl 0818.76069
[9] Knoll, D.; McHugh, P., NEWEDGE: A 2-D fully implicit edge plasma fluid code for advanced physics and complex geometries, J. Nuc. Mat., 196-198, 352-356 (1992)
[10] Brown, P.; Hindmarsh, A., Matrix-free methods for stiff systems of ODE’s, SIAM Journal of Numerical Analysis, 23, 610-638 (1986) · Zbl 0615.65078
[11] Cai, X. C.; Gropp, W. D.; Keyes, D. E.; Tidririi, M. D., Parallel implicit methods for aerodynamics, (Keyes, D. E.; Xu, J., Seventh International Conference on Domain Decomposition Methods in Scientific Computing (1993), AMS: AMS University Park, Penn) · Zbl 0818.76065
[12] McHugh, P.; Knoll, D., Inexact Newton’s method solution to the incompressible Navier-Stokes and Energy equations using standard and matrix-free implimentations, AIAA J., 32, 12 (1994) · Zbl 0832.76071
[13] Averick, B.; Ortega, J., Solutions of nonlinear Poisson-type equations, Applied Numerical Mathematics, 8, 443-455 (1991) · Zbl 0755.65101
[14] Dembo, R., Inexact Newton methods, SIAM Journal Numerical Analysis, 19, 400-408 (1982) · Zbl 0478.65030
[15] Saad, Y.; Schultz, M., Conjugate gradient-like algorithms for solving non-symetric linear systems, Mathematics of Computation, 44, 417-424 (1985) · Zbl 0566.65019
[16] Curfman, L. V., Solution of Convective-Diffusive Flow Problems with Newton-like Methods, (Ph.D. Thesis (1993), University of Virginia)
[17] Faber, V.; Manteuffel, T. A., Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM Journal of Numerical Analysis, 21, 352 (1984) · Zbl 0546.65010
[18] Ern, A.; Giovangigli, V.; Keyes, D. E.; Smooke, M. D., Towards polyalgorithmic linear systems solvers for nonlinear elliptic problems, Siam Journal of Scientific and Statistical Computing, 15, 681-702 (1994) · Zbl 0807.65027
[19] Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, Siam Journal of Scientific and Statistical Computing, 10, 36-52 (1989) · Zbl 0666.65029
[20] der Vorst, H. A.V., Bi-CGSTAB:A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, Siam Journal of Scientific and Statistical Computing, 13, 631-644 (1992) · Zbl 0761.65023
[21] Freund, R., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM Journal Scientific Computing, 14, 470-482 (1993) · Zbl 0781.65022
[22] Fletcher, R., Conjugate gradient methods for indefinite systems, (Watson, G. A., Proceedings Dundee Conference on Numerical Analysis. Proceedings Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, vol. 506 (1975), Springer: Springer Berlin), 73-79 · Zbl 0326.65033
[23] Tong, C., A Comparative study of Preconditioned Lanczos Methods for Nonsymmetric Linear Systems, (Technical Report SAND91-8240,UC-404 (1992), Sandia National Laboratories)
[24] J. W.W., A conjugate gradient-truncated direct method for the iterative solution of the reservoir simulation pressure equation, Society of Petroleum Emgineers Journal, 345-353 (1981)
[25] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, Siam Journal of Scientific and Statistical Computing, 11, 450-481 (1990) · Zbl 0708.65049
[26] Mulder, W.; Leer, B. V., Experiments with implicit upwind methods for the Euler equations, J. Comp. Phys., 59, 232-246 (1985) · Zbl 0584.76014
[27] Stangeby, P., The plasma sheath, (Post; Behrisch, Physics of Plasma Wall Interactions in Controlled Fusion (1984), Plenum Press: Plenum Press New York) · Zbl 0542.76173
[28] Braginskii, S., Transport processes in a plasma, (Reviews of Plasma Physics (1965), Consultants Bureau: Consultants Bureau New York)
[29] Rognlien, T.; Milovich, J.; Rensink, M.; Porter, G., A fully implicit, time-dependent 2-D fluid code for modeling tokamak edge plasmas, J. Nuc. Mat., 196-198, 347-351 (1992)
[30] Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G., A Monte-Carlo model of neutral-particle transport in diverted plasmas, J. Comp. Phys., 46, 309-327 (1982) · Zbl 0492.76120
[31] Vold, E., Transport in the Tokamak Edge Plasma, (Ph.D. Thesis (1989), University of California: University of California Los Angles)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.