×

Multi-component convection-diffusion with internal heating or cooling. (English) Zbl 0922.76170

Summary: The onset of convection in a fluid layer with an internal heat source is studied. In addition to the temperature field, there are present two different, dissolved salt fields. Thus, this paper investigated the effect of an internal heat source on the problem of triply-diffusive convection. The effect of the boundary conditions is found to be important. For two surfaces free of tangential stress, a disconnected oscillatory neutral curve can be found which has the same minimum as the stationary convection one. Thus the possibility of simultaneous initiation of convection by two different mechanisms, but with two different aspect ratios, is found. It is also found that the above effect is present when the lower surface is fixed while the upper surface is free of tangential stress, even if the container of the fluid is of finite horizontal extent. When both surfaces are fixed, we have not observed the twin minima effect.

MSC:

76E15 Absolute and convective instability and stability in hydrodynamic stability
76R50 Diffusion
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Chen, C. F., Su, T. F.: Effect of surface tension on the onset of convection in a double-diffusive layer. Phys. FluidsA 4, 2360-2367 (1992). · doi:10.1063/1.858477
[2] Corriel, S. R., McFadden, G. B., Voorhees, P. W., Sekerka, R. F.: Stability of a planar interface solidification of a multicomponent system. J. Crystal Growth82, 300-313 (1987).
[3] Drazin, P. G., Reid, W. H.: Hydrodynamic stability. Cambridge: Cambridge University Press 1981. · Zbl 0449.76027
[4] Guo, J. L., Kaloni, P. N.: Nonlinear stability problem of a rotating double-diffusive porous layer. J. Math. Anal. Appl.190, 373-390 (1995). · Zbl 0831.76024 · doi:10.1006/jmaa.1995.1082
[5] Guo, J. L., Kaloni, P. N.: Double-diffusive convection in a porous medium, nonlinear stability, and the Brinkman effect. Stud. Appl. Math.94, 341-358 (1995). · Zbl 0822.76035
[6] Guo, J. L., Qin, Y., Kaloni, P. N.: Nonlinear stability problem of a rotating doubly diffusive fluid layer. Int. J. Eng. Sci.104, 173-200 (1995). · Zbl 0831.76024
[7] Hutter, K., Strughan, B.: Penetrative convection in thawing subsea permafrost. Cont. Mech. Thermodyn.9, 259-272 (1997). · Zbl 0883.76039 · doi:10.1007/s001610050070
[8] Kaloni, P. N., Guo, J. L.: Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl.204, 138-155 (1996). · Zbl 0874.76084 · doi:10.1006/jmaa.1996.0428
[9] Lopez, A. R., Romero, L. A., Pearlstein, A. J.: Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. Phys. FluidsA 2, 897-902 (1990). · Zbl 0713.76042 · doi:10.1063/1.857650
[10] Matthews, P. C.: A model for the onset of penetrative covection. J. Fluid Mech.188, 571-583 (1988). · Zbl 0642.76064 · doi:10.1017/S0022112088000850
[11] McKenzie, D. P., Roberts, J. M., Weiss, N. O.: Convection in the Earth’ mantle: towards a numerical solution. J. Fluid Mech.62, 465-538 (1974). · Zbl 0277.76087 · doi:10.1017/S0022112074000784
[12] Mielke, A.: Mathematical analysis of sideband instabilities with application to Rayleigh-B?nard convection. J. Nonlin. Sci.7, 57-99 (1997). · Zbl 0871.76028 · doi:10.1007/BF02679126
[13] Moroz, I. M.: Multiple instabilities in a triply diffusive system. Stud. Appl. Math.80, 137-164 (1989). · Zbl 0678.76034
[14] Mulone, G.: On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Cont. Meth. Thermodyn.6, 161-184 (1994). · Zbl 0809.76034 · doi:10.1007/BF01135252
[15] Noulty, R. A., Leaist, D. G.: Quarternary diffusion in aqueous KCl?K2PO4?H3PO4 mixtures. J. Phys. Chem.91, 1655-1658 (1987). · doi:10.1021/j100290a072
[16] Payne, L. E., Song, J. C., Straughan, B.: Double diffusive porous penetrative convection-thawing subsea permaforst. Int. J. Eng. Sci.26, 797-809 (1988). · Zbl 0667.76137 · doi:10.1016/0020-7225(88)90031-6
[17] Pearlstein, A. J., Harris, R. M., Terrones, G.: The onset of convective instability in a triply diffusive fluid layer. J. Fluid Mech.202, 443-465 (1989). · Zbl 0666.76066 · doi:10.1017/S0022112089001242
[18] Roberts, P. H.: Convection in horizontal layers with internal heat generation. Theory J. Fluid Mech.30, 33-49 (1967). · doi:10.1017/S0022112067001284
[19] Rosenblat, S., Homsy, G. M., Davis, S. H.: Nonlinear Marangoni convection in bounded layers. Part 2. Rectangular cylindrical containers. J. Fluid Mech.120, 123-138 (1982). · Zbl 0498.76039 · doi:10.1017/S0022112082002699
[20] Straughan, B.: The energy method, stability and nonlinear convection. Springer Ser. in Appl. Math. Sci. (1992). · Zbl 0743.76006
[21] Straughan, B.: Mathematical aspects of penetrative convection. Harlow: Longman 1993. · Zbl 0833.76072
[22] Straughan, B., Walker, D. W.: Anisotropic porous penetrative convection. Proc R. Soc. London Ser.A 452, 97-115 (1966). · Zbl 0868.76033
[23] Straughan, B., Walker, D. W.: Multi-component convection-diffusion and penetrative convection. Fluid Dyn. Res.19, 77-89 (1997). · doi:10.1016/S0169-5983(96)00031-7
[24] Tracey, J.: Multi-component convection-diffusion in a porous medium. Cont. Mech. Thermodyn.8, 361-381 (1996). · Zbl 0905.76034 · doi:10.1007/s001610050050
[25] Tracey, J.: Stability analyses of multi-component convection-diffusion problems. Ph.D. Thesis, University of Glasgow 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.