×

Asymptotic of heat kernels on projective spaces of large dimensions and on disk hypergroups. (English) Zbl 0922.60017

Let \(h^x_{t,n}=h_n(t,x,\cdot)\), where \(h_n\) is the heat kernel on the complex projective space \(\mathbb P_n(\mathbb C)\), \(x\in \mathbb P_n(\mathbb C)\), \(t>0\). Denote \(t(n)=(4n)^{-1}[\log (n-1)+c],\;c\in \mathbb R\). For each \(x\in \mathbb P_n(\mathbb C)\) the author finds the asymptotics of \(\| h^x_{t(n),n}-1\| _{1,U_n}\) for \(n\to \infty\). Here \(\| \cdot \| _{1,U_n}\) is the \(L_1\)-norm with respect to the uniform distribution on \(\mathbb P_n(\mathbb C)\). Similar results are obtained for the quaternionic projective space, symmetric spaces \(U(n)/U(n-1)\), and disk hypergroups. The proofs are based on the comparison of heat kernels with Poisson kernels, and the central limit theorem for Poisson kernels.

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
60F05 Central limit and other weak theorems
58J65 Diffusion processes and stochastic analysis on manifolds
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
43A62 Harmonic analysis on hypergroups
Full Text: DOI

References:

[1] Annabi, Une Convolution Généralisée sur le Disque Unite, C. R. Acad. Sci. 278 pp 21– (1974) · Zbl 0273.43009
[2] Arendt, Lecture Notes in Math. 1184, in: One-parameter Semigroups of Positive Operators pp 122– (1986)
[3] Bloom , W. R. Heyer , H. 1995
[4] Bouhaik, Un Théoreme Limite Central dans un Hypergroupe Bidimensionnel, Ann. Inst. Poincare Probab. 28 pp 47– (1992)
[5] Diaconis, Group Representations in Probability and Statistics (1988)
[6] Diaconis, An Affine Walk on the Hypercube., Asymptotic Methods in Analysis and Combinatorics, J. Comp. Appl. Math. 41 pp 215– (1992)
[7] Diaconis, Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions., Random Struct. Alg. 1 pp 51– (1990) · Zbl 0723.60085
[8] Johnson, Composition Series and Intertwining Operators for the Spherical Principal Series I, Trans. Amer. Math. Soc. 229 pp 137– (1977)
[9] Johnson, Distributions in Statistics: Continuous Univariate Distributions 2 (1970) · Zbl 0213.21101
[10] Kanjin, A Convolution Measure Algebra on the Unit Disc, Tohoku Math. J. 28 pp 105– (1976) · Zbl 0321.43011
[11] Porod, The Cut-Off Phenomenon for Random Reflections., II Complex and Quaternionic Cases, Probab. Theor. Rel. Fields 104 pp 181– (1996) · Zbl 0865.60005
[12] Rosenthal, Random Rotations: Characters and Random Walks on SO(N), Ann. Probab. 22 pp 398– (1994) · Zbl 0799.60007
[13] Saloff, Precise Estimates on the Rate of Which Certain Diffusions Tend to Equilibrium., Math. Z. 217 pp 641– (1994) · Zbl 0815.60074
[14] Sapiro, Special Functions Related to Representations of the Group SU(n) of Class I with Respect to SU(n-1) (n 3), Amer. Math. Soc. Transl. 113 pp 201– (1979) · Zbl 0406.33010 · doi:10.1090/trans2/113/09
[15] Szegö, Am. Math. Soc. Coll. Publ. 23, in: Orthogonal Polynomials (1959)
[16] Voit, Duals of Subhypergroups and Quotients of Commutative Hypergroups, Math. Z. 210 pp 289– (1992) · Zbl 0759.43002
[17] Voit, Limit Theorems for Random Walks on the Double Coset Spaces U(n)//U(n-1) for n , J. Comp. Appl. Math. 65 pp 449– (1995) · Zbl 0851.60007
[18] Voit, Asymptotic Distributions for the Ehrenfest Urn and Related Random Walks, J Appl. Probab. 33 pp 340– (1996) · Zbl 0855.60063
[19] Voit, Limit Theorems for Compact Two-Point Homogeneous Spaces of Large Dimensions, J. Theoret. Probab. 9 pp 353– (1996) · Zbl 0870.60008
[20] Voit, Asymptotic Behavior of Heat Kernels on Spheres of Large Dimensions, J. Multiv Anal. 59 pp 230– (1996) · Zbl 0877.60008
[21] Watanabe, Generating Functions and Integral Representations for the Spherical Functions on Some Gelfand Pairs, J. Math. Kyoto Univ. 33 pp 1125– (1993) · Zbl 0801.43003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.