×

Class number problem for imaginary cyclic number fields. (English) Zbl 0920.11077

Let \(N\) be an imaginary cyclic number field of degree \(2n\), \(n\) greater than or equal to 5, and \(n\) not a 2-power. The authors determine both all fields \(N\) with relative class numbers less than or equal to 4, and all fields \(N\) with class numbers equal to their genus class numbers. The main results can be stated as follows, where \(N\) is defined as above: 1) There are exactly 20 fields \(N\) with relative class numbers less than or equal to 4; their degrees are less than or equal to 22 and their conductors are less than or equal to 91. 2) There are exactly 15 fields \(N\) with class numbers equal to their genus class numbers; their degrees are less than or equal to 20, their conductors are less than or equal to 91, and their class numbers are less than or equal to 3.
In order to prove these results, the authors make use of the Dedekind zeta function, class number formulas, primitive Dirichlet characters of a given order, properties of CM-fields, conductors, and genus fields, and an impressive amount of computation to obtain class numbers, relative class numbers, genus class numbers, and conductors. Much of the theory and techniques is based upon the previous work of Louboutin, for whom 12 references are cited. A key proposition used to obtain the above results is the following, where \(\overline{h}\) denotes the relative class number of a CM-field or imaginary abelian number field \(K\), and \(h_F\) (respectively \(g_F)\) denotes the class number (respectively genus class number) of an abelian number field \(F\):
1) Let \(K\) and \(L\) be two CM-fields with \(K\) contained in \(L\) and such that \([L:K]\) is odd. Then \(\overline h_k\) divides \(\overline h_L\).
2) Let \(K\) be an imaginary abelian number field of degree \(2n\) with maximal real subfield \(K_+\). Let \(t\) denote the number of rational primes \(p\) such that all prime ideals of \(K_+\) above \(p\) are ramified in the quadratic extension \(K/K_+\). If \(h_k=g_k\), then \(\overline h_k=2^{t-1+ \varepsilon}\), where \(\varepsilon=0\) or 1 according as the narrow genus field of \(K_+\) is real or imaginary.
3) Let \(F\) be an abelian number field. If \(h_F=g_F\), then for any subfield \(K\) of \(F\) we also have \(h_k=g_k\).

MSC:

11R29 Class numbers, class groups, discriminants
11R20 Other abelian and metabelian extensions
Full Text: DOI

References:

[1] Arno, S., The imaginary quadratic fields of class number 4, Acta Arith., 60, 321-334 (1992) · Zbl 0760.11033
[2] Gras, G., Sur les \(ll\), Ann. Inst. Fourier (Grenoble), 23, 1-48 (1973) · Zbl 0276.12013
[3] Hasse, H., Über die Klassenzahl abelscher Zahlkörper (1952), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0063.01966
[4] Horie, K., On a ratio between relative class numbers, Math. Z., 211, 505-521 (1992) · Zbl 0761.11039
[5] Lemmermeyer, F., Ideal class groups of cyclotomic number fields I, Acta Arith., 72, 347-359 (1995) · Zbl 0837.11059
[6] van der Linden, F. J., Class number computation of real abelian number fields, Math. Comp., 39, 693-707 (1982) · Zbl 0505.12010
[7] Louboutin, S.; Okazaki, R., The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76, 523-548 (1998) · Zbl 0891.11054
[8] Louboutin, S.; Okazaki, R.; Olivier, M., The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349, 3657-3678 (1997) · Zbl 0893.11045
[9] Louboutin, S., Determination of all non-quadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents ⩽2, Math. Comp., 64, 323-340 (1995) · Zbl 0822.11072
[10] Louboutin, S., The imaginary cyclic sextic fields with class numbers equal to their genus class numbers, Colloq. Math., 75, 205-212 (1998) · Zbl 0885.11057
[11] Louboutin, S., Majorations explicites de |\(L1χ\), C. R. Acad. Sci. Paris, 316, 11-14 (1993) · Zbl 0774.11051
[12] Louboutin, S., Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120, 425-434 (1994) · Zbl 0795.11058
[13] S. Louboutin, The non quadratic imaginary cyclic fields of 2-power degrees with class numbers equal to their genus class numbers, Proc. Amer. Math. Soc.; S. Louboutin, The non quadratic imaginary cyclic fields of 2-power degrees with class numbers equal to their genus class numbers, Proc. Amer. Math. Soc. · Zbl 0919.11071
[14] Louboutin, S., Minoration au point 1 des fonctions \(L\), Acta Arith., 62, 535-540 (1992)
[15] S. Louboutin, Upper bounds on |\(Lχ\); S. Louboutin, Upper bounds on |\(Lχ\)
[16] S. Louboutin, Zéros réels des fonctions zêta et minorations de nombres de classes, Séminaire de Théorie des Nombres, Paris, 1991-1992, 135, 152; S. Louboutin, Zéros réels des fonctions zêta et minorations de nombres de classes, Séminaire de Théorie des Nombres, Paris, 1991-1992, 135, 152
[17] Louboutin, S., A finiteness theorem for imaginary abelian number fields, Manuscripta Math., 91, 343-352 (1996) · Zbl 0869.11089
[18] Louboutin, S., CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory, 67, 1-10 (1997) · Zbl 0881.11078
[19] Low, M. E., Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith., 14, 117-140 (1986) · Zbl 0207.05602
[20] Miyada, I., On imaginary abelian number fields of type (2,2,…) with one in each genus, Manuscripta Math., 88, 535-540 (1995) · Zbl 0851.11061
[21] Mäki, S., The Determination of Units in Real Cyclic Sextic Fields. The Determination of Units in Real Cyclic Sextic Fields, Lecture Notes in Math., 797 (1980), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0423.12006
[22] Murty, R., An analogue of Artin’s conjecture for abelian extensions, J. Number Theory, 18, 241-248 (1984) · Zbl 0531.12010
[23] Masley, J. M., Class number of real cyclic number fields with small conductor, Compositio Math., 37, 297-319 (1978) · Zbl 0428.12003
[24] Montgomery, H.; Weinberger, P., Notes on small class numbers, Acta Arith., 24, 529-542 (1974) · Zbl 0285.12004
[25] R. Okazaki, Inclusion of CM-fields and divisibility of relative class numbers, Doshisha University, 1996; R. Okazaki, Inclusion of CM-fields and divisibility of relative class numbers, Doshisha University, 1996 · Zbl 0952.11023
[26] Park, Y.-H.; Kwon, S.-H., Determination of all imaginary abelian sextic number fields with class number ⩽11, Acta Arith., 82, 27-43 (1997) · Zbl 0889.11036
[27] Park, Y.-H.; Kwon, S.-H., Determination of all non-quadratic imaginary cyclic number fields of 2-power degree with class number ⩽20, Acta Arith., 83, 211-223 (1998) · Zbl 0895.11047
[28] Stark, H., A complete determination of all the complex quadratic fields of class number one, Michigan Math. J., 14, 1-27 (1967) · Zbl 0148.27802
[29] Stark, H., On complex quadratic fields with class number two, Math. Comp., 29, 289-302 (1975) · Zbl 0321.12009
[30] Washington, L., Introduction to Cyclotomic Fields. Introduction to Cyclotomic Fields, Grad. Texts in Math., 83 (1996), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.