×

Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators. (English) Zbl 0919.35095

Authors’ summary: This paper is devoted to certain semi-classical asymptotics of a Schrödinger type operator \(A(h)\) in the vicinity of a regular value \(E\) of its principal symbol \(a_0(x,\xi)\). We investigate the semi-classical behaviour of the number \(N_{E+rh,c}(h)\) of all eigenvalues \(\lambda_{j}(h)\) of \(A(h)\) situated in the interval \([E+rh-ch,E+rh+ch]\), where the energy shift parameter \(r\) and the size constant \(c>0\) are both bounded. The behaviour of \(N_{E+rh,c}(h)\) for small \(h\) depends on an oscillating term \(Q(h,r)\) which is related to the periodic trajectories of the Hamiltonian vector field \(H_{a_0}\) on the energy hypersurface \(\Sigma=\{(x,\xi):a_0(x,\xi)=E\}\). If \(Q(h,r)\) is uniformly continuous in \(r\) for any \(0<h\leq h_0\), we obtain asymptotics of the counting function \(N_{E+rh,c}(h)\) as \(h\) tends to zero. On the other hand, the points of discontinuity of \(Q(h,r)\) in \(r\) may give rise to a clustering of eigenvalues of \(A(h)\) near the energy level \(E\). Such jumps of the function \(Q\) in \(r\) are described in terms of a suitable quantization condition. In particular, if \(a_0\) is analytic in a neighborhood of \(\Sigma\) and the energy surface is connected and of contact type we obtain a complete description of the asymptotics of \(N_{E+rh,c}(h)\). Moreover, we obtain a new semi-classical trace formula giving for any \(\rho\) with Fourier transform \(\hat{\rho}\in C_0^{\infty}({\mathbb R})\) the asymptotics of \[ \sum_{\lambda_{j}(h)\leq\lambda}\rho\left(\frac{E-\lambda_{j}(h)}{h}\right) \] in terms of certain dynamical and topological characteristics of the periodic trajectories of \(H_{a_0}\) on \(\Sigma\) without any additional clean intersection assumptions.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] V. Benci , , H. Hofer and P.H. Rabinowitz , A remark on a priori bound and existence of periodic solutions of hamiltonian systems, Periodic solutions of hamiltonian systems and related topics , NATO ASI Series , Series C , 209 , 1987 , pp. 85 - 88 . MR 920609 | Zbl 0656.34033 · Zbl 0656.34033
[2] R. Brcmmelhuis and A. Uribe , A semi-classical trace formula for Schrödinger operators , Commun. Math. Phys. , Vol. 136 , 1991 , pp. 567 - 584 . Article | MR 1099696 | Zbl 0729.35093 · Zbl 0729.35093 · doi:10.1007/BF02099074
[3] F. Cardoso and G. Popov , Rayleigh quasimodes in linear elasticity , Comm. Partial Diff. Equations , Vol. 17 , 1992 , pp. 1327 - 1367 . MR 1179289 | Zbl 0795.35067 · Zbl 0795.35067 · doi:10.1080/03605309208820888
[4] A.-M. Charbonnel and G. Popov , A semi-classical trace formula for several commuting operators , Preprint, Université de Nantes , 1996 .
[5] J. Chazarain , Spectre d’un hamiltonien quantique et mécanique classique , Comm. Partial Diff. Equations , Vol. 5 , 1980 , pp. 595 - 644 . MR 578047 | Zbl 0437.70014 · Zbl 0437.70014 · doi:10.1080/0360530800882148
[6] Y. Colin de Verdière , Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques , Comment. Math. Helv. , Vol. 54 , 1979 , pp. 508 - 522 . MR 543346 | Zbl 0459.58014 · Zbl 0459.58014 · doi:10.1007/BF02566290
[7] S. Dozias , Opérateurs h-pseudo-différentiels à flot périodique et asymptotique semi-classique , Thèse de Doctorat , Université Paris XIII , 1994 . · Zbl 0874.35139
[8] J. Duistermaat , Oscillatory integrals, Lagrange immersions and infolding of singularities , Comm. in Pure and Appl. Math. , Vol. 27 , 1974 , pp. 207 - 281 . MR 405513 | Zbl 0285.35010 · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[9] J. Duistermaat and V. Guillemin , The spectrum of positive elliptic operators and periodic bicharacteristics , Invent. Math. , Vol. 29 , 1975 , 39 - 79 . MR 405514 | Zbl 0307.35071 · Zbl 0307.35071 · doi:10.1007/BF01405172
[10] J.P. Françoise and V. Guillemin , On the period spectrum of a symplectic map , J. Funct. Anal. , Vol. 100 , 1991 , pp. 317 - 358 . MR 1125229 | Zbl 0739.58020 · Zbl 0739.58020 · doi:10.1016/0022-1236(91)90114-K
[11] V. Guillemin and A. Uribe , Circular symmetry and the trace formula , Invent. Math. , Vol. 96 , 1989 , pp. 385 - 423 . MR 989702 | Zbl 0686.58040 · Zbl 0686.58040 · doi:10.1007/BF01393968
[12] T. Guriev and Yu . Safarov , Sharp asymptotics of the spectrum of the Laplace operator on a manifold with periodic geodesics , Trudy Matem. Inst. Steklov , Vol. 179 , 1988 (in Russian), English transl. in Proc. Steklov Institute of Mathematics , Vol. 179 , 1989 , pp. 35 - 53 . MR 964912 | Zbl 0701.58058 · Zbl 0701.58058
[13] M. Gutzwiller , Periodic orbits and classical quantization condition , J. Math. Phys. , Vol. 12 , 1971 , pp. 345 - 358 .
[14] B. Helffer , A. Martinez and D. Robert , Ergodicité et limite semi-classique , Commun. Math. Phys. , Vol. 109 , 1987 , pp. 313 - 326 . Article | MR 880418 | Zbl 0624.58039 · Zbl 0624.58039 · doi:10.1007/BF01215225
[15] B. Helffer and D. Robert , Propriétes asymptotiques du spectre d’opérateurs pseudo-différentieles sur Rn , Comm. Partial Diff. Equations , Vol. 7 , 1982 , pp. 795 - 882 . MR 662451 | Zbl 0501.35081 · Zbl 0501.35081 · doi:10.1080/03605308208820239
[16] B. Helffer and D. Robert , Calcul fonctionnel par la transformation de Mellin , J. Funct. Anal. , Vol. 53 , 1983 , pp. 246 - 268 . MR 724029 | Zbl 0524.35103 · Zbl 0524.35103 · doi:10.1016/0022-1236(83)90034-4
[17] H. Hofer and E. Zehnder , Symplectic Invariants and Hamiltonian Dynamics, Birkhäser , Basel , 1994 . MR 1306732 | Zbl 0837.58013 · Zbl 0837.58013
[18] L. Hörmander , Fourier integral operators I , Acta Math. Vol. 127 , 1971 , pp. 79 - 183 . MR 388463 | Zbl 0212.46601 · Zbl 0212.46601 · doi:10.1007/BF02392052
[19] L. Hörmander , The Analysis of Linear Partial Differential Operators III , Springer , Berlin - Heidelberg - New York , 1985 . MR 781536 | Zbl 0601.35001 · Zbl 0601.35001
[20] L. Hörmander , The Analysis of Linear Partial Differential Operators IV , Springer , Berlin - Heidelberg - New York , 1985 . MR 404822 · Zbl 0612.35001
[21] V. Ivrii , Semi-classical microlocal analysis and precise spectral asymptotics , Ecole Polytechnique, Centre de Mathématiques , Preprints 1, 2, 3, 1991 .
[22] E. Meinrenken , Semiclassical principal symbols and Gutzwiller’s trace formula , Reports on Mathematical Physics , Vol. 31 , 1992 , pp. 279 - 295 . MR 1232640 | Zbl 0794.58046 · Zbl 0794.58046 · doi:10.1016/0034-4877(92)90019-W
[23] T. Paul et A. Uribe , Sur la formule semi-classique des traces , C. R, Acad. Sci. Paris , t. 313 , Série I, 1991 , pp. 217 - 222 . MR 1126383 | Zbl 0738.58046 · Zbl 0738.58046
[24] V. Petkov and G. Popov , On the Lebesgue measure of the periodic points of a contact manifold , Math. Z. , Vol. 218 , 1995 , pp. 91 - 102 . Article | MR 1312579 | Zbl 0816.58008 · Zbl 0816.58008 · doi:10.1007/BF02571890
[25] V. Petkov et G. Popov , Une formule de trace semi-classique et asymptotiques de valeurs propres de l’opérateur de Schrödinger , C. R. Acad. Sci. Paris , t. 323 , Série I, 1996 , pp. 163 - 168 . MR 1402536 | Zbl 0858.35095 · Zbl 0858.35095
[26] V. Petkov and D. Robert , Asymptotiques semi-clasiques du spectre d’hamiltoniens quantiques et trajectoires classiques périodiques , Comm Part. Diff. Equations , Vol. 10 , 1985 , pp. 365 - 390 . MR 784682 | Zbl 0574.35067 · Zbl 0574.35067 · doi:10.1080/03605308508820382
[27] G. Popov , Length spectrum invariants of Riemannian manifolds , Math. Z. , Vol. 213 , 1993 , pp. 311 - 351 . Article | MR 1221719 | Zbl 0804.53068 · Zbl 0804.53068 · doi:10.1007/BF03025724
[28] Yu Safarov , Asymptotics of the spectrum of a pseudodifferential operator with periodic characteristics , Zap. Nauchn. Sem. Leningrad. Otdel Mat. Inst. Steklov (LOMI). vol. 152 . 1986 , pp. 94 - 104 (in Russian), English translation in J. Soviet Math. , Vol. 40 , 1988 . pp. 645 - 652 . MR 869246 | Zbl 0621.35071 · Zbl 0621.35071
[29] Yu. Safarov , Exact asymptotics of the spectrum of a boundary value problem and periodic billiards . Izv. AN SSSR, Ser. Mat ,. Vol. 52 , 1988 , pp. 1230 - 1251 (in Russian), English translation in Math. USSR Izvestiya , Vol. 33 , 1989 , pp. 553 - 573 . MR 984217 | Zbl 0682.35082 · Zbl 0682.35082 · doi:10.1070/IM1989v033n03ABEH000856
[30] Yu . Safarov and D. Vasil’ev , Branching Hamiltonian billiards , Doklady Akad. Nauk SSSR , Vol. 301 , 1988 , pp. 271 - 274 , English translation, Soviet Math. Dokl. , Vol. 38 , 1989 , pp. 64 - 68 . MR 967818 | Zbl 0671.58012 · Zbl 0671.58012
[31] A. Uribe and St. Zelditch , Spectral statistics on Zoll surfaces , Commun. Math. Pxhysics , Vol. 154 , 1993 , pp. 313 - 346 . Article | MR 1224082 | Zbl 0791.58102 · Zbl 0791.58102 · doi:10.1007/BF02097000
[32] A. Weinstein , On the hypotheses of Rabinowitz’ periodic orbit theorems , J. Diff. Equations , Vol. 33 , 1979 , pp. 353 - 358 . MR 543704 | Zbl 0388.58020 · Zbl 0388.58020 · doi:10.1016/0022-0396(79)90070-6
[33] St. Zelditch , Kuznecov sum formulae and Szegö limit formulae on manifolds , Comm. Partial Diff. Equations , Vol. 17 , 1992 , pp. 221 - 260 . MR 1151262 | Zbl 0749.58062 · Zbl 0749.58062 · doi:10.1080/03605309208820840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.