×

Painlevé analysis and integrability properties of a \(2+1\) nonrelativistic field theory. (English) Zbl 0918.35119

The authors consider a \(2+1\)-dimensional field theory described by a nonlinear Schrödinger equation, with ordinary derivatives replaced by gauge covariant derivatives, supplemented by (Chern-Simons) constraints on the gauge and matter fields. Their concern is to establish the integrability of this theory. They proceed by applying the J. Weiss, M. Tabor and G. Carnevale [J. Math. Phys. 24, 522–526 (1983; Zbl 0514.35083)] generalization of the Painlevé test for partial differential equations. They effect this on a gauge independent form of the equations to obtain integer resonances of orders \(1, 2, 3\) and 4. However compatibility conditions on the arbitrary functions introduced in the analysis are not satisfied and (even conditionally) the test is not passed. The authors close by pointing out that there exist several reductions which may, however, be integrable.

MSC:

35Q40 PDEs in connection with quantum mechanics
81T10 Model quantum field theories
35Q55 NLS equations (nonlinear Schrödinger equations)

Citations:

Zbl 0514.35083

References:

[1] DOI: 10.1142/S0217979291001413 · doi:10.1142/S0217979291001413
[2] DOI: 10.1103/PhysRevLett.64.2969 · Zbl 1050.81526 · doi:10.1103/PhysRevLett.64.2969
[3] DOI: 10.1103/PhysRevLett.64.2969 · Zbl 1050.81526 · doi:10.1103/PhysRevLett.64.2969
[4] DOI: 10.1103/PhysRevD.31.848 · doi:10.1103/PhysRevD.31.848
[5] DOI: 10.1103/PhysRevD.31.848 · doi:10.1103/PhysRevD.31.848
[6] DOI: 10.1063/1.525875 · Zbl 0531.35069 · doi:10.1063/1.525875
[7] DOI: 10.1063/1.525875 · Zbl 0531.35069 · doi:10.1063/1.525875
[8] DOI: 10.1016/0375-9601(89)90072-8 · doi:10.1016/0375-9601(89)90072-8
[9] DOI: 10.1098/rspa.1929.0189 · JFM 56.1057.01 · doi:10.1098/rspa.1929.0189
[10] DOI: 10.1016/0550-3213(92)90455-K · doi:10.1016/0550-3213(92)90455-K
[11] DOI: 10.1006/aphy.1994.1018 · Zbl 0793.35101 · doi:10.1006/aphy.1994.1018
[12] DOI: 10.1016/0167-2789(89)90040-7 · Zbl 0687.35093 · doi:10.1016/0167-2789(89)90040-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.