×

Steady compressible Navier-Stokes equations with large potential forces via a method of decomposition. (English) Zbl 0914.76070

The authors investigate the steady compressible Navier-Stokes equations \[ -\mu_1\Delta v-(\mu_1+\mu_2)\nabla\text{div} v +\nabla \rho+\rho(v\cdot\nabla)v=\rho(\nabla U+f), \] \(\text{div} (\rho v)=0\) for \(x\in\Omega\), \(v=0\) for \(x\in\partial\Omega\). Here \(\Omega\) is a bounded domain of \(\mathbb{R}^n\) \((n=2,3)\), \(\mu_1, \mu_2\) are given constants, \(v\) and \(\rho\) are unknown velocity and density. The potential \(U\) can be arbitrarily “large”. The rest state \((0,\rho_0)\) is the solution corresponding to the potential force \(\nabla U\). Here \(\rho_0(x)=\rho_M\exp U(x)\), where \(\rho_M\) is a certain positive constant.
The solution of the problem is found near the rest state \((0,\rho_0)\). It is proved that if \(f\) is sufficiently small, then there exists a unique solution in a neighborhood of \((0,\rho_0)\). The solution is obtained by the method of decomposition: the velocity \(v\) is split into a non-homogeneous incompressible part \(u (\text{div} (\rho_0 u)=0)\) and a compressible part \(\nabla \psi\).

MSC:

76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q30 Navier-Stokes equations
Full Text: DOI

References:

[1] Agmon, Comm. Pure Appl. Math. 17 pp 35– (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] Beirao da Veiga, Comm. Math. Phys. 109 pp 229– (1987) · Zbl 0621.76074 · doi:10.1007/BF01215222
[3] Analyse Fonctionelle, Théorie et Applications, Masson, 1983.
[4] Farwig, Comm. Partial Differential Equations 14 pp 1579– (1989) · Zbl 0701.35127 · doi:10.1080/03605308908820667
[5] Farwig, Math. Z. 221 pp 409– (1992) · Zbl 0727.35106 · doi:10.1007/BF02571437
[6] An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Springer, Berlin, (1994).
[7] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, London, 1969. · Zbl 0184.52603
[8] Ladyzhenskaya, Zap. Nauchn. Sem. LOMI 59 pp 81– (1976)
[9] J. Sov. Math. 10 pp 257– (1978) · Zbl 0388.35061 · doi:10.1007/BF01566606
[10] and , ’The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid’, University of Wisconsin, Madison, MRC Technical Summary Report 2237, (1981).
[11] and , ’Initial boundary value problems for the equations of motion general fluids’, in: Computing Methods in Applied Sciences and Engineering, (, eds), pp. 389-406, North-Holand, Amsterdam, 1982.
[12] Matsumura, Comm. Math. Phys. 89 pp 445– (1983) · Zbl 0543.76099 · doi:10.1007/BF01214738
[13] Nazarov, Math. Ann. 304 pp 121– (1996) · Zbl 0844.35083 · doi:10.1007/BF01446288
[14] and , work in preparation.
[15] Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, (1967).
[16] ’Steady flows of viscous compressible fluids–L2-approach’, Proc. EQUAM 92, R. Salvi, I. Straskraba, eds., 3(3), 181-199 (1993).
[17] Novotny, Math. Model. Meth. Appl. Sci. 3 pp 725– (1993) · Zbl 0803.76072 · doi:10.1142/S0218202593000370
[18] ’ACompactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole R3)’, University of Toulon, preprint (1995).
[19] Novotny, Comment Math. Univ. Carolin. 37 pp 43– (1996)
[20] Novotny, Comm. Math. Univ. Carolin. 37 pp 43– (1996)
[21] Novotny, Siberian Math. J. 34 pp 120– (1993) · Zbl 0808.76083 · doi:10.1007/BF00971405
[22] and , ’Lp-approach to steady flows of viscous compressible fluids in exterior domains’, University of Ferrara, preprint (1992);
[23] Arch. Rat. Mech. Anal. 126 pp 243– (1994) · Zbl 0809.76080 · doi:10.1007/BF00375644
[24] and , ’On the decay at infinity of steady flow of viscous gas in an exterior domain I({\(\nu\)} = 0)’, University of Toulon, preprint (1995).
[25] Novotny, J. Math. Kyoto Univ. 36 pp 389– (1996) · Zbl 0874.76074 · doi:10.1215/kjm/1250518556
[26] Novotny, Math. Ann. 370 pp 439– (1997) · Zbl 0883.76072 · doi:10.1007/s002080050084
[27] and , ’Lp-approach for steady flows of viscous compressible heat conductive gas’, Math. Model. Meth. Appl. Sci., in press.
[28] and , ’About the incompressible limit of steady compressible Navier-Stokes equations in exterior domains’, in preparation.
[29] and , work in preparation.
[30] and , work in preparation.
[31] ’On the uniqueness of viscous compressible flows’, Proc. IV. Symp.–Trends in applications of pure mathematics to mechanics, (ed.), Pitman, London (1981).
[32] ’Existence and uniqueness for viscous steady compressible motions’, Proc. Sem. Fis. Mat., Trieste, Dinamica dei fluidi e dei gas ionizzati (1982).
[33] Padula, Arch. Rat. Mech. Anal. 77 pp 89– (1987)
[34] Padula, Steady flows of viscous ideal gas in domains with noncompact boundaries: existence and asymptotic behaviour in a pipe
[35] Valli, Ann. Math. Pura Appl. 130 pp 197– (1982) · Zbl 0599.76081 · doi:10.1007/BF01761495
[36] Valli, Ann. Sc. Norm. Sup. Pisa 4 pp 607– (1983)
[37] Valli, Ann. Inst. H. Poincare 4 pp 99– (1987) · Zbl 0627.76080 · doi:10.1016/S0294-1449(16)30374-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.