×

Supercuspidal representations of GL\(_n\): Explicit Whittaker functions. (English) Zbl 0913.22013

Let us consider \((\pi, V)\) as an irreducible supercuspidal representation of \(G= GL_n (F)\) \((n \geq 1)\) over a non-Archimedean local field \(F\). Consider further a \(G\)-homomorphism \(V \rightarrow W\), where the space \(W = W (G, \chi)\) consists of functions \(f: G \rightarrow \mathbb C\) which are right \(G\)-smooth and satisfy \(f(ug)=\chi(u) f(g), u \in U\), and a maximal unipotent subgroup \(V\) of \(G\), and where \(\chi\) is a smooth nondegenerate character of \(U\). Its image is a space of Whittaker functions of \(\pi\) and the pair \((U, \chi)\). The main result of the present work is to describe this pair \((U, \chi)\) and to further construct an explicit Whittaker function on \(\pi\).

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI

References:

[1] Bushnell, C. J., Hereditary orders, Gauss sums and supercuspidal representations of \(GL_N\), J. Reine Angew. Math., 375-376, 184-210 (1987) · Zbl 0601.12025
[2] Bushnell, C. J.; Henniart, G., Local tame lifting for GL \((N\), Publ. Math. IHES, 83, 105-233 (1996) · Zbl 0878.11042
[3] C. J. Bushnell, G. Henniart, Local tame lifting for GL \((N\); C. J. Bushnell, G. Henniart, Local tame lifting for GL \((N\) · Zbl 0878.11042
[4] Bushnell, C. J.; Henniart, G.; Kutzko, P. C., Local Rankin-Selberg convolutions for \(GL_n\): Explicit conductor formula, J. Amer. Math. Soc., 11, 703-730 (1998) · Zbl 0899.22017
[5] Bushnell, C. J.; Kutzko, P. C., The admissible dual of GL \((N\), Ann. of Math. Stud., 129 (1993) · Zbl 0787.22017
[6] Carter, R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters (1985), Wiley-Interscience: Wiley-Interscience New York · Zbl 0567.20023
[7] Gel’fand, I. M.; Kazhdan, D. A., Representations of the groups GL \((nKK\), Funktsional. Anal. i Prilozhen, 6, 73-74 (1972)
[8] Jacquet, H.; Piatetskii-Shapiro, I. I.; Shalika, J. A., Rankin-Selberg convolutions, Amer. J. Math., 105, 367-483 (1983) · Zbl 0525.22018
[9] R. Johnson, Some Whittaker Models for GL \((n\); R. Johnson, Some Whittaker Models for GL \((n\)
[10] Kutzko, P. C., Mackey’s theorem for non-unitary representations, Proc. Amer. Math. Soc., 64, 173-175 (1977) · Zbl 0375.22005
[11] Kutzko, P. C., The Langlands conjecture for \(GL_2\), Ann. of Math., 112, 381-412 (1980) · Zbl 0469.22013
[12] Rodier, F., Whittaker models for admissible representations of reductive \(p\)-adic split groups, (Moore, C. C., Harmonic Analysis on Homogeneous Spaces. Harmonic Analysis on Homogeneous Spaces, Proc. Symposia Pure Math., XXVI (1973), Am. Math. Soc: Am. Math. Soc Providence), 425-430 · Zbl 0287.22016
[13] Shahidi, F., Fourier transforms of intertwining operators and Plancherel measures for GL \((n\), Amer. J. Math., 106, 67-111 (1984) · Zbl 0567.22008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.