×

An introduction to the segmented flow approach for discrete material flow systems. (English) Zbl 0912.90164

Summary: Due to increases in versatility and the complexity of demands in modern manufacturing systems a growing need has evolved to simplify the control of these systems while maintaining a high degree of efficiency and flexibility in operation. The segmented flow approach (SF) suggested in this paper is a possible solution to these needs. This structure simplifies the control task by reducing the need for dispatching and-by eliminating the need for routeing material handling devices and scheduling traffic at intersections. Each task involves only one material handling device and one possible route. This structure maintains a high degree of efficiency by operating material handling devices in a bidirectional mode and eliminates congestion and blocking by operating them on mutually exclusive tracks. This paper introduces a design procedure for an SF implemented system using a minimum cost objective and compares the throughput and time in system performance of this system to a conventional system and a tandem type system by means of simulation.

MSC:

90B30 Production models

Software:

CPLEX
Full Text: DOI

References:

[1] BAKKALBASI , O. , 1990 , Flow path network and layout configuration for material delivery systems . PhD thesis , Georgia Institute of Technology , Atlanta , Georgia .
[2] DOI: 10.1080/07408179108963842 · doi:10.1080/07408179108963842
[3] DOI: 10.1016/0377-2217(92)90024-4 · doi:10.1016/0377-2217(92)90024-4
[4] CPLEX , 1990 , Using the CPLEX Linear Optimizer , CPLEX Optimization, Inc. , Houston , TX .
[5] DOI: 10.1007/BF01386390 · Zbl 0092.16002 · doi:10.1007/BF01386390
[6] DOI: 10.1080/00207548608919789 · doi:10.1080/00207548608919789
[7] EGBELU P. J., Material Flow 4 pp 17– (1987)
[8] DOI: 10.1080/00207548708919869 · doi:10.1080/00207548708919869
[9] DOI: 10.1080/00207548908942532 · doi:10.1080/00207548908942532
[10] GIBLIN P. J., Graphs, Surfaces and Homology (1977) · Zbl 0372.55001
[11] DOI: 10.1080/00207549008942764 · doi:10.1080/00207549008942764
[12] DOI: 10.1080/00207549008942772 · doi:10.1080/00207549008942772
[13] DOI: 10.1080/00207549108948090 · Zbl 0729.90816 · doi:10.1080/00207549108948090
[14] KIM K. H., International Journal of Production Research (1991)
[15] DOI: 10.1016/0307-904X(91)90045-Q · Zbl 0837.90038 · doi:10.1016/0307-904X(91)90045-Q
[16] MAXWELL W. L., IIE Transactions 14 pp 114– (1982)
[17] PRITSKER A. A. B., Introduction to Simulation and SLAM II (1986)
[18] DOI: 10.1080/00207549008942753 · doi:10.1080/00207549008942753
[19] DOI: 10.1080/00207549108948044 · Zbl 0729.90524 · doi:10.1080/00207549108948044
[20] DOI: 10.1287/trsc.12.3.232 · doi:10.1287/trsc.12.3.232
[21] TANCHOCO J. M. A., Material Flow 4 pp 33– (1987)
[22] DOI: 10.1080/00207549208942917 · doi:10.1080/00207549208942917
[23] USHER J. S., Proceedings of the 1988 IIE Conference pp 174– (1988)
[24] DOI: 10.1002/1520-6750(199106)38:3<431::AID-NAV3220380311>3.0.CO;2-C · Zbl 0725.90030 · doi:10.1002/1520-6750(199106)38:3<431::AID-NAV3220380311>3.0.CO;2-C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.