×

Geometric nonlinear analysis of space shell structures using generalized conforming flat shell elements – for space shell structures. (English) Zbl 0912.73065

Summary: We derive an updated Lagrangian formulation of the generalized conforming flat shell element with drilling degrees of freedom based on the incremental equation of virtual work for a three-dimensional continuum, aiming at a purely geometric nonlinear analysis of space structures. While solving the nonlinear equations, the Euler-Newton method and modified Euler-Newton method are used in static analyses, and the modified arc-length method and Newton arc-length method are used for post-buckling problems. We give numerical examples to demonstrate the effectiveness of the proposed approach.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
Full Text: DOI

References:

[1] Yuqiu, Generalized conforming triangular flat shell element, Eng. Mech. 10 (4) pp 1– (1993)
[2] Washizu, Variational Methods in Elasticity and Plasticity (1984)
[3] Yin, Conforming triangular membrane element with vertex rotational freedom from generalized conforming condition, Eng. Mech. 10 (2) pp 31– (1993)
[4] Yuqiu, Generalized conforming plate bending elements using point and line compatibility conditions, Comput. Struct. 54 (4) pp 717– (1995) · Zbl 0871.73069 · doi:10.1016/0045-7949(94)00362-7
[5] Bathe, Computing Methods in Applied Sciences and Engineering (1982)
[6] Jiaju, Large-displacement/rotation and large strain plastic finite element analysis of general shell structure, Int. J. Press. Vessels Pip. 40 pp 1– (1989) · doi:10.1016/0308-0161(89)90121-X
[7] Bergen, Solution techniques for non-linear finite element problems, Int. j. numer. methods eng. 12 pp 1677– (1978) · Zbl 0392.73081 · doi:10.1002/nme.1620121106
[8] Crisfield, A faster incremental iterative solution procedure that handles ”snap-through”, Comput. Struct. 13 pp 55– (1981) · Zbl 0479.73031 · doi:10.1016/0045-7949(81)90108-5
[9] Simo, On a stress resultant geometrically exact model, Part 3, Computational aspects of the non-linear theory, Comput. Methods Appl. Mech. Eng. 79 pp 21– (1990) · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[10] Peng, A consistent co-rotational formulation for shells using the constant stress/constant moment triangle, Int. j. numer. methods eng. 35 pp 1829– (1992) · Zbl 0767.73076 · doi:10.1002/nme.1620350907
[11] Argyris, Finite element method the natural approach, Comput. Methods Appl. Mech. Eng. 17 (18) pp 1– (1979) · Zbl 0407.73058 · doi:10.1016/0045-7825(79)90083-5
[12] Simo, Three-dimensional finite-strain rod model, Part II: Computational aspects, Comput. Methods Appl. Mech. Eng. 58 pp 79– (1986) · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[13] Gruttmann, Hangover theory and numeric of thin elastic shells with finite rotations, Ing.-Arch. 59 pp 54– (1989) · doi:10.1007/BF00536631
[14] Bathe, A simple and effective element for analysis of general shell structures, Comput. Struct. 13 pp 673– (1981) · Zbl 0455.73075 · doi:10.1016/0045-7949(81)90029-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.