×

Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. (English) Zbl 0911.65091

Discretizations of Hamilton-Jacobi and level set equations on triangular grids are discussed. Starting from monotone schemes violating a Lipschitz condition for the Hamiltonian classes of numerical approximations are derived. Several numerical examples document the features of the presented methods. \(\copyright\) Academic Press.
Reviewer: Th.Sonar (Hamburg)

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] Abgrall, R., Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Comm. Pure Appl. Math., 49, 1339 (1996) · Zbl 0870.65116
[2] Adalsteinsson, D.; Sethian, J. A., A fast level set method for propagating interfaces, J. Comput. Phys., 118, 269 (1995) · Zbl 0823.65137
[3] Adalsteinsson, D.; Sethian, J. A., A unified level set approach to etching, deposition and lithography. I. Algorithms and two-dimensional simulations, J. Comput. Phys., 120, 128 (1995) · Zbl 0864.65086
[4] Adalsteinsson, D.; Sethian, J. A., A unified level set approach to etching, deposition and lithography. II. Three-dimensional simulations, J. Comput. Phys., 122, 348 (1995) · Zbl 0840.65131
[5] D. Adalsteinsson, J. A. Sethian, A unified level set approach to etching, deposition and lithography. III. Complex simulations and multiple effects, J. Comput. Phys.; D. Adalsteinsson, J. A. Sethian, A unified level set approach to etching, deposition and lithography. III. Complex simulations and multiple effects, J. Comput. Phys. · Zbl 0952.65113
[6] Bern, M.; Epstein, D., Mesh Generation and Optimal Triangulation (1992)
[7] Chew, L. P., Guaranteed-Quality Triangular Meshes (1989)
[8] L. P. Chew, Guaranteed-quality mesh generation for curved surfaces, Proceedings of the 9th ACM Symposium on Computational Geometry, 1993; L. P. Chew, Guaranteed-quality mesh generation for curved surfaces, Proceedings of the 9th ACM Symposium on Computational Geometry, 1993
[9] Chopp, D. L., Computing minimal surfaces via level set curvature flow, J. Comput. Phys., 106, 77 (1993) · Zbl 0786.65015
[10] Corrias, L.; Falcone, M.; Natalini, R., Numerical schemes for conservation laws via Hamilton-Jacobi equations, Math. Comp., 64, 555 (1995) · Zbl 0827.65085
[11] Crandall, M. G.; Lions, P. L., Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43, 1 (1984) · Zbl 0556.65076
[12] Crandall, M. G.; Tartar, L., Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78, 385 (1980) · Zbl 0449.47059
[13] Deconinck, H.; Struijs, R.; Roe, P. L., Compact Advection Schemes on Unstructured Grids (1993) · Zbl 0771.76048
[14] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, 555 (1989)
[15] Hansbo, P., Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables, J. Comput. Phys., 109, 274 (1993) · Zbl 0795.76045
[16] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1987) · Zbl 0628.65098
[17] Kruzkov, S. N., First order quasilinear equations in independent variables, Mat. Sb., 81, 228 (1970) · Zbl 0202.11203
[18] Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations (1982) · Zbl 1194.35459
[19] Lions, P. L.; Souganidis, P. E., Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations, Numer. Math., 69, 441 (1995) · Zbl 0834.65087
[20] Löhner, R. L.; Baum, J. D., Numerical Simulation of Shock Interaction with Complex Geometry Structures Using a New h-Refinement Scheme on Unstructured Grids (1990)
[21] Milne, B., Adaptive Level Set Methods Interfaces (1995)
[22] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys., 79, 12 (1988) · Zbl 0659.65132
[23] Roe, P. L., Linear Advection Schemes on Triangular Meshes (1987)
[24] Roe, P. L., “Optimum” Upwind Advection on a Triangular Mesh (1990)
[25] Ruppert, J., A New and Simple Algorithm for Quality Two-Dimensional Mesh Generation (1992)
[26] Sethian, J. A., Curvature and the evolution of fronts, J. Math. Phys., 101, 487 (1985) · Zbl 0619.76087
[27] Sethian, J. A., Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geom., 31, 131 (1990) · Zbl 0691.65082
[28] Sethian, J. A., Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces (1995) · Zbl 0875.76397
[29] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. U.S.A., 93, 1591 (1996) · Zbl 0852.65055
[30] Sethian, J. A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Sciences (1996) · Zbl 0859.76004
[31] Shephard, M. S., Parallel Automated Adaptive Procedures for Unstructured Meshes (1995)
[32] Shu, C. W.; Osher, S., Efficient implementation of essentially nonoscillatory shock-capturing scheme, J. Comput. Phys., 77, 439 (1988) · Zbl 0653.65072
[33] Zhao, H. K.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179 (1996) · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.