×

Functional means and harmonic functional means. (English) Zbl 0909.26010

Let \(f: (0,\infty)\to\mathbb{R}\) be a continuous, strictly monotonic function, and let \(\mu\) be a probability measure on \([0,1]\). For \(x,y>0\), let \[ {\mathcal M}_f(x,y;\mu)= f^{-1} \Biggl[\int^1_0 f(\lambda x+ (1-\lambda)y)d\mu(\lambda)\Biggr], \] called the functional mean of \(x\), \(y\) with respect to the measure \(\mu\). For a particular function \(f\), or special measures \(\mu\) one can reobtain various means of two arguments, including the arithmetic, geometric, logarithmic, identric and power means. The author proves certain interesting theorems on the characterization of equality, homogeneity or monotonicity of such means, related to the function \(f\). We quote the following result: Let \(f\), \(g\) be continuous and strictly increasing on \((0,\infty)\). Then a necessary and sufficient condition in order that \({\mathcal M}_f(x,y;\mu)\leq{\mathcal M}_g(x,y; \mu)\) for all \(x\), \(y\) and \(\mu\), is that \(g\circ f^{-1}\) is convex. Functional and harmonic means of \(n\) arguments are introduced, too; and the corresponding properties are stated without proof.

MSC:

26D15 Inequalities for sums, series and integrals
26A51 Convexity of real functions in one variable, generalizations
39B72 Systems of functional equations and inequalities
Full Text: DOI

References:

[1] DOI: 10.2307/2322637 · Zbl 0597.26027 · doi:10.2307/2322637
[2] Hardy, Inequalities (1934)
[3] DOI: 10.2307/2317088 · Zbl 0241.33001 · doi:10.2307/2317088
[4] DOI: 10.2307/2322844 · Zbl 0632.26008 · doi:10.2307/2322844
[5] DOI: 10.1007/BF02112299 · Zbl 0717.26014 · doi:10.1007/BF02112299
[6] DOI: 10.1006/jmaa.1996.0165 · Zbl 0854.26013 · doi:10.1006/jmaa.1996.0165
[7] DOI: 10.1006/jmaa.1994.1137 · Zbl 0802.26009 · doi:10.1006/jmaa.1994.1137
[8] DOI: 10.1006/jmaa.1995.1038 · Zbl 0822.26014 · doi:10.1006/jmaa.1995.1038
[9] DOI: 10.1007/BF01200091 · Zbl 0693.26005 · doi:10.1007/BF01200091
[10] DOI: 10.1006/jmaa.1993.1278 · Zbl 0783.33001 · doi:10.1006/jmaa.1993.1278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.