×

Duality of a nonconvex sum of ratios. (English) Zbl 0908.90250

Summary: For mathematical programs with objective involving a sum of ratios of affine functions, there are few theoretical results due to the nonconvex nature of the program. In this paper, we derive a duality theory for these programs by establishing their connection with geometric programming. This connection allows one to bring to bear the powerful theory and computational algorithms associated with geometric programming.

MSC:

90C32 Fractional programming
90C30 Nonlinear programming
Full Text: DOI

References:

[1] Schaible, S., A Note on the Sum of a Linear and Linear-Fractional Function, Naval Research Logistics Quarterly, Vol. 24, pp. 691–693, 1977. · Zbl 0377.90086 · doi:10.1002/nav.3800240416
[2] Craven, B. D., Fractional Programming, Sigma Series in Applied Mathematics, Heldermann Verlag, Berlin, Germany, Vol. 4, 1988.
[3] Martein, L., Maximum of the Sum of a Linear Function and a Linear-Fractional Function, Rivista di Matematica per le Scienze Economiche e Sociali, Vol. 8, pp. 13–20, 1985 (in Italian). · Zbl 0572.90092
[4] Cambini, A., Martein, L., and Schaible, S., On Maximizing a Sum of Ratios, Journal of Information and Optimization Sciences, Vol. 10, pp. 65–79, 1989. · Zbl 0676.90081 · doi:10.1080/02522667.1989.10698952
[5] Schaible, S., Fractional Programming, Handbook of Global Optimization, Edited by R. Horst and P. M. Pardalos, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 495–608, 1995. · Zbl 0832.90115
[6] Schaible, S., Fractional Programming with Sums of Ratios, Proceedings of the Italian Workshop on Generalized Convexity, Edited by E. Castagnoli and G. Georgi, Milan, Italy, pp. 163–175, 1995.
[7] Duffin, R. J., Peterson, E. L., and Zener, C., Geometric Programming, Wiley, New York, New York, 1967. · Zbl 0171.17601
[8] Passy, U., and Wilde, D. J., Generalized Polynomial Optimization, SIAM Journal on Applied Mathematics, Vol. 15, pp. 1344–1356, 1967. · Zbl 0171.18002 · doi:10.1137/0115117
[9] Duffin, R. J., and Peterson, E. L., Reversed Geometric Programs Treated by Harmonic Means, Indiana University Mathematics Journal, Vol. 22, pp. 531–550, 1972. · Zbl 0246.90044 · doi:10.1512/iumj.1973.22.22045
[10] Duffin, R. J., and Peterson, E. L., Geometric Programming with Signomials, Journal of Optimization Theory and Applications, Vol. 11, pp. 3–35, 1973. · Zbl 0238.90069 · doi:10.1007/BF00934288
[11] Avriel, M., Dembo, R., and Passy, U., Solution of Generalized Geometric Programs, International Journal of Numerical Methods in Engineering, Vol. 9, pp. 149–168, 1975. · Zbl 0299.65035 · doi:10.1002/nme.1620090112
[12] Cole, F., Bochet, W., Van Assche, F., Ecker, J., and Smeers, Y., Reversed Geometric Programming: A Branch-and-Bound Method Involving Linear Subproblems, European Journal of Operations Research, Vol. 5, pp. 26–35, 1980. · Zbl 0436.90098 · doi:10.1016/0377-2217(80)90070-3
[13] Allueva, A., A New Algorithm in Signomial Programming, Trabajos de Investigación Operacional, Vol. 7, pp. 135–156, 1992. · Zbl 0759.90081 · doi:10.1007/BF02888263
[14] Wilde, D. J., and Beightler, C. S., Foundations of Optimization, Prentice Hall, Englewood Cliffs, New Jersey, 1967. · Zbl 0189.19702
[15] Craven, B. D., Lagrangian Conditions and Quasiduality, Bulletin of the Australian Mathematical Society, Vol. 16, pp. 325–339, 1977. · Zbl 0362.90106 · doi:10.1017/S0004972700023431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.