×

Effects of the Coriolis force on the stability of Stuart vortices. (English) Zbl 0908.76036

Summary: A detailed investigation of the effects of the Coriolis force on the three-dimensional linear instabilities of Stuart vortices is proposed. This exact inviscid solution describes an array of co-rotating vortices embedded in a shear flow. When the axis of rotation is perpendicular to the plane of the basic flow, the stability analysis consists of an eigenvalue problem for non-parallel versions of the coupled Orr-Sommerfeld and Squire equations, which is solved numerically by a spectral method. The Coriolis force acts on instabilities as a ‘tuner’, when compared to the non-rotating case. A weak anticyclonic rotation is destablizing: three-dimensional Floquet modes are promoted, and at large spanwise wavenumber their behaviour is predicted by a ‘pressureless’ analysis. The basic mechanism of short-wave breakdown is a competition between instabilities generated by the elliptical cores of the vortices and by the hyperbolic stagnation points in the braids, in accordance with predictions from the ‘geometrical optics’ stability theory. On the other hand, cyclonic or stronger anticyclonic rotation kills three-dimensional instabilities by a cut-off in the spanwise wavenumber. Under rapid rotation, the Stuart vortices are stabilized, whereas inertial waves propagate.

MSC:

76E99 Hydrodynamic stability
76U05 General theory of rotating fluids
Full Text: DOI