×

Strongly indefinite systems with critical Sobolev exponents. (English) Zbl 0908.35034

Let \(\Omega\) be a bounded domain in \(\mathbb R^n\) (\(n\geq 4\)) with smooth boundary, \(\lambda, \mu\in\mathbb R\), and \(p\geq q>1\). The authors investigate the solvability of the system \[ -\Delta v=\lambda u+| u|^{p-1}u,\quad -\Delta u=\mu v+| v|^{q-1}v\quad \text{in } \Omega,\qquad u=0=v\quad\text{on }\partial\Omega, \] in case that \({1\over{p+1}}+{1\over{q+1}}={{n-2}\over n}\) (critical Sobolev exponents). They show the existence of a positive solution (\(u>0\), \(v>0\)) provided that \(\lambda\) and \(\mu\) are positive and \(\lambda \mu<\lambda_1^2\) with \(\lambda_1\) the principal eigenvalue for the Laplacian on \(\Omega\) under homogeneous Dirichlet conditions. This extends a well-known result of Brezis and Nirenberg for the scalar problem \[ -\Delta u=\lambda u+| u|^{p-1}u\quad \text{in } \Omega, \qquad u=0 \quad\text{on }\partial\Omega \] (\(p=(n+2)/(n-2)\)) which asserts positive solvability if \(0<\lambda<\lambda_1\). The authors also provide conditions under which the system has nontrivial, not necessarily positive solutions. The proof employs a variational approach and relies on a dual formulation due to Clarke and Ekeland, which was already utilized by Ambrosetti and Struwe as an alternative to Brezis and Nirenberg’s original proof. The advantage is that the critical points of the dual functionals are mountain passes.
Reviewer: G.Hetzer (Auburn)

MSC:

35J50 Variational methods for elliptic systems
35J65 Nonlinear boundary value problems for linear elliptic equations
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
Full Text: DOI

References:

[1] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349 – 381. · Zbl 0273.49063
[2] A. Ambrosetti and M. Struwe, A note on the problem -\Delta \?=\?\?+\?|\?|^{2*-2}, Manuscripta Math. 54 (1986), no. 4, 373 – 379. · Zbl 0596.35043 · doi:10.1007/BF01168482
[3] Vieri Benci and Donato Fortunato, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl. (4) 132 (1982), 215 – 242 (1983) (English, with Italian summary). · Zbl 0526.58013 · doi:10.1007/BF01760982
[4] Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241 – 273. · Zbl 0465.49006 · doi:10.1007/BF01389883
[5] Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486 – 490. · Zbl 0526.46037
[6] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437 – 477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[7] Frank H. Clarke and Ivar Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), no. 2, 103 – 116. · Zbl 0403.70016 · doi:10.1002/cpa.3160330202
[8] Ph. Clément, D. G. de Figueiredo, and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), no. 5-6, 923 – 940. · Zbl 0818.35027 · doi:10.1080/03605309208820869
[9] Ph. Clément, D.G. de Figueiredo & E. Mitidieri, A priori estimates for positive solutions of semilinear elliptic systems via Hardy-Sobolev inequalities, Nonlinear Partial Differential Equations (Fès, 1994), Pitman Res. Notes in Math. Ser., vol. 343, Longman Sci. Tech., Harlow, 1996, pp. 73-91. CMP 97:03
[10] Ph. Clément and Robert C. A. M. Van der Vorst, Interpolation spaces for \partial _{\?}-systems and applications to critical point theory, PanAmer. Math. J. 4 (1994), no. 4, 1 – 45. · Zbl 0849.58074
[11] Ph. Clément and R. C. A. M. Van der Vorst, On a semilinear elliptic system, Differential Integral Equations 8 (1995), no. 6, 1317 – 1329. · Zbl 0835.35041
[12] Djairo G. de Figueiredo and Patricio L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), no. 1, 99 – 116. · Zbl 0799.35063
[13] Djairo G. de Figueiredo and Enzo Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal. 17 (1986), no. 4, 836 – 849. · Zbl 0608.35022 · doi:10.1137/0517060
[14] Djairo G. de Figueiredo and Enzo Mitidieri, Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 2, 49 – 52 (English, with French summary). · Zbl 0712.35021
[15] Helmut Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), no. 1, 185 – 214. · Zbl 0524.58010
[16] Josephus Hulshof and Robertus van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), no. 1, 32 – 58. · Zbl 0793.35038 · doi:10.1006/jfan.1993.1062
[17] Josephus Hulshof and Robertus C. A. M. van der Vorst, Asymptotic behaviour of ground states, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2423 – 2431. · Zbl 0860.35029
[18] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145 – 201. · Zbl 0704.49005 · doi:10.4171/RMI/6
[19] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45 – 121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[20] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441 – 467. · Zbl 0511.35033 · doi:10.1137/1024101
[21] Giovanni Mancini and Enzo Mitidieri, Positive solutions of some coercive-anticoercive elliptic systems, Ann. Fac. Sci. Toulouse Math. (5) 8 (1986/87), no. 3, 257 – 292 (English, with French summary). · Zbl 0661.35032
[22] Enzo Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), no. 1-2, 125 – 151. · Zbl 0816.35027 · doi:10.1080/03605309308820923
[23] S. I. Pohožaev, The eigenfunctions of quasilinear elliptic problems, Mat. Sb. (N.S.) 82 (124) (1970), 192 – 212 (Russian).
[24] Patrizia Pucci and James Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681 – 703. · Zbl 0625.35027 · doi:10.1512/iumj.1986.35.35036
[25] L. A. Peletier and R. C. A. M. Van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations 5 (1992), no. 4, 747 – 767. · Zbl 0758.35029
[26] R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1992), no. 4, 375 – 398. · Zbl 0796.35059 · doi:10.1007/BF00375674
[27] Robert C. A. M. Van der Vorst, Fourth-order elliptic equations with critical growth, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 295 – 299 (English, with English and French summaries). · Zbl 0834.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.