×

Projectivity, transitivity and AF-telescopes. (English) Zbl 0906.46044

Summary: Continuing our study of projective \(C^{*}\)-algebras, we establish a projective transitivity theorem generalizing the classical Glimm-Kadison result. This leads to a short proof of Glimm’s theorem that every \(C^{*}\)-algebra not of type I contains a \(C^{*}\)-subalgebra which has the Fermion algebra as a quotient. Moreover, we are able to identify this subalgebra as a generalized mapping telescope over the Fermion algebra. We next prove what we call the multiplier realization theorem. This is a technical result, relating projective subalgebras of a multiplier algebra \(M(A)\) to subalgebras of \(M(E)\), whenever \(A\) is a \(C^{*}\)-subalgebra of the corona algebra \(C(E)=M(E)/E\). We developed this to obtain a closure theorem for projective \(C^{*}\)-algebras, but it has other consequences, one of which is that if \(A\) is an extension of an MF (matricial field) algebra (in the sense of Blackadar and Kirchberg) by a projective \(C^{*}\)-algebra, then \(A\) is MF.
The last part of the paper contains a proof of the projectivity of the mapping telescope over any AF (inductive limit of finite-dimensional) \(C^{*}\)-algebra. Translated to generators, this says that in some cases it is possible to lift an infinite sequence of elements, satisfying infinitely many relations, from a quotient of any \(C^{*}\)-algebra.

MSC:

46L05 General theory of \(C^*\)-algebras
Full Text: DOI

References:

[1] Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in \?*-algebras, Math. Scand. 41 (1977), no. 1, 117 – 139. · Zbl 0377.46049 · doi:10.7146/math.scand.a-11707
[2] Bruce Blackadar, Shape theory for \?*-algebras, Math. Scand. 56 (1985), no. 2, 249 – 275. · Zbl 0615.46066 · doi:10.7146/math.scand.a-12100
[3] Bruce Blackadar and Eberhard Kirchberg, Generalized inductive limits of finite-dimensional \?*-algebras, Math. Ann. 307 (1997), no. 3, 343 – 380. · Zbl 0874.46036 · doi:10.1007/s002080050039
[4] Ola Bratteli, Inductive limits of finite dimensional \?*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195 – 234. · Zbl 0264.46057
[5] Robert C. Busby, Double centralizers and extensions of \?*-algebras, Trans. Amer. Math. Soc. 132 (1968), 79 – 99. · Zbl 0165.15501
[6] François Combes, Sur les faces d’une \?*-algèbre, Bull. Sci. Math. (2) 93 (1969), 37 – 62 (French). · Zbl 0177.17801
[7] Joachim Cuntz, Simple \?*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173 – 185. · Zbl 0399.46045
[8] Kenneth R. Davidson, Lifting positive elements in \?*-algebras, Integral Equations Operator Theory 14 (1991), no. 2, 183 – 191. · Zbl 0745.47023 · doi:10.1007/BF01199904
[9] E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for \?*-algebras, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 152 – 180. · Zbl 0645.46051
[10] Ruy Exel and Terry A. Loring, Finite-dimensional representations of free product \?*-algebras, Internat. J. Math. 3 (1992), no. 4, 469 – 476. · Zbl 0809.46055 · doi:10.1142/S0129167X92000217
[11] James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318 – 340. · Zbl 0094.09701
[12] Pieranita Rizzonelli, Risoluzione delle equazioni del tipo ”Faltung” con la transformata di Laplace, senza ipotesi sul comportamento all’infinito, Boll. Un. Mat. Ital. (3) 15 (1960), 10 – 19 (Italian, with English summary). · Zbl 0097.08901
[13] James G. Glimm and Richard V. Kadison, Unitary operators in \?*-algebras, Pacific J. Math. 10 (1960), 547 – 556. · Zbl 0152.33001
[14] K. R. Goodearl and P. Menal, Free and residually finite-dimensional \?*-algebras, J. Funct. Anal. 90 (1990), no. 2, 391 – 410. · Zbl 0708.46051 · doi:10.1016/0022-1236(90)90089-4
[15] R. V. Kadison, Irreducible operator algebras, Proc. Natl. Acad. Sci. USA 43 (1957), 273-276. · Zbl 0078.11502
[16] Terry A. Loring, \?*-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159 – 203. · Zbl 0778.46036 · doi:10.1006/jfan.1993.1029
[17] Terry A. Loring, Projective \?*-algebras, Math. Scand. 73 (1993), no. 2, 274 – 280. · Zbl 0811.46060 · doi:10.7146/math.scand.a-12471
[18] Terry A. Loring, Stable relations. II. Corona semiprojectivity and dimension-drop \?*-algebras, Pacific J. Math. 172 (1996), no. 2, 461 – 475. · Zbl 0854.46048
[19] Catherine L. Olsen and Gert K. Pedersen, Corona \?*-algebras and their applications to lifting problems, Math. Scand. 64 (1989), no. 1, 63 – 86. · Zbl 0668.46029 · doi:10.7146/math.scand.a-12248
[20] Gert K. Pedersen, Isomorphisms of UHF algebras, J. Funct. Anal. 30 (1978), no. 1, 1 – 16. · Zbl 0389.46045 · doi:10.1016/0022-1236(78)90051-4
[21] Gert K. Pedersen, \?*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. · Zbl 0416.46043
[22] Gert K. Pedersen, \?\?\?*-algebras and corona \?*-algebras, contributions to noncommutative topology, J. Operator Theory 15 (1986), no. 1, 15 – 32. · Zbl 0597.46060
[23] Gert K. Pedersen, The corona construction, Operator Theory: Proceedings of the 1988 GPOTS-Wabash Conference (Indianapolis, IN, 1988) Pitman Res. Notes Math. Ser., vol. 225, Longman Sci. Tech., Harlow, 1990, pp. 49 – 92.
[24] Claude Schochet, Topological methods for \?*-algebras. III. Axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399 – 445. · Zbl 0491.46061
[25] N. E. Wegge-Olsen, \?-theory and \?*-algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.