×

Counting function asymptotics and the weak Weyl-Berry conjecture for connected domains with fractal boundaries. (English) Zbl 0903.35047

Summary: We study the spectral asymptotics for connected fractal domains and Weyl-Berry conjecture. We prove, for some special connected fractal domains, the sharp estimate for second term of counting function asymptotics, which implies that the weak form of the Weyl-Berry conjecture holds for the case. Finally, we also study a naturally connected fractal domain, and we prove, in this case, the weak Weyl-Berry conjecture holds as well.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P20 Asymptotic distributions of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Weyl H. Uber die asymptotische Verteilung der Eigenverte. Gott Nach 1911, 110–117 · JFM 42.0432.03
[2] Weyl H. Das asymptotische Vereilungsgesetz der eigenverte linear partieller differential gleichungen. Math Ann, 1912, 71: 441–479 · JFM 43.0436.01 · doi:10.1007/BF01456804
[3] Metivier G. Etude asymptotique des valuers propres et de la function spectrale de problemes aux limits. These de Doctorat d’Etat, Mathematiques, Universite de Nice, France 1976
[4] Metivier G. Valeurs propres de problemes aux limits elliptiques irreguliers. Bull Soc Math France Mem, 1977, 51–52, 125–219
[5] Seeley R T. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3. Adv in Math, 1978, 29: 244–269 · Zbl 0382.35043 · doi:10.1016/0001-8708(78)90013-0
[6] Seeley R T. An estimate near the boundary for the spectral function of the Laplace operator. Amer J Math, 1980, 102: 869–902 · Zbl 0447.35029 · doi:10.2307/2374196
[7] Ivrii V Ja. Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct Anal Appl, 1980, 14: 98–106 · Zbl 0453.35068 · doi:10.1007/BF01086550
[8] Ivrii V Ja. Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary. Lecture Notes in Math, 1100, Springer-verlag, 1984
[9] Melrose R. Weyl’s conjecture for manifolds with concave boundary. Geometry of the Laplace Operator, Proc Symp Pure Math 36, Amer Math Soc Providence, 1980 · Zbl 0436.58024
[10] Melrose R. The trace of the wave group. Contemp Math 5, Amer Math Soc Providence, 1984, 127–167 · Zbl 0547.35095
[11] Hörmander L. The analysis of linear partial differential operators. III and IV, Berlin: Springer-Verlag, 1985
[12] Berry M V. Distribution of modes in fractal resonators, structural stability in physics. Berlin: Springer-Verlag, 1979, 51–53
[13] Berry M V. Some geometric aspects of wave motion, wave front dislocations, diffraction, catastrophes, diffractals. Geometry of the Laplace operator, Proc Symp Pure Math 36, Amer Math Soc Providence, 1980, 13–38
[14] Brossard J, Carmona R. Can one hear the dimension of a fractal. Comm Math Phys, 1986, 104: 103–122 · Zbl 0607.58043 · doi:10.1007/BF01210795
[15] Lapidus M L, Fleckinger-Pell J. Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien. C R Acad Sci Paris, Ser 1 Math, 1988, 306: 171–175 · Zbl 0654.35079
[16] Lapidus M L. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans Amer Math Soc, 1991, 325: 465–529 · Zbl 0741.35048 · doi:10.1090/S0002-9947-1991-0994168-5
[17] Lapidus M L. Vibration of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture. Proc Dundee Conference on Ordinary and Partial Differential Equations, 1993, IV: 126–209 · Zbl 0830.35094
[18] Chen H, Sleeman B D. Fractal drums andn-dimensional modified Weyl-Berry conjecture. Comm Math Phys, 1995, 168: 581–607 · Zbl 0841.35075 · doi:10.1007/BF02101845
[19] Fleckinger-Pelle J, Vassiliev D. An example of a two term asymptotics for the ”counting function” of a fractal drum. Trans Amer Math Soc, 1993, 337: 99–116 · Zbl 0851.35102
[20] Caetano A M. Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates. J Lond Math Soc, 1991, 43(2): 431–450 · Zbl 0744.35026 · doi:10.1112/jlms/s2-43.3.431
[21] Lapidus M L. Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. Diff Equ and Math Phys, C Bennewitz ed, New York: Academic Press, 1991, 152–182
[22] Lapidus M L, Pomerance C. The Riemann zeta function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc London Math Soc, 1993, 66(3): 41–69 · Zbl 0739.34065 · doi:10.1112/plms/s3-66.1.41
[23] Sleeman B D. Some new contributions to the Weyl-Berry conjecture for fractal domains. Intl J Applied Sc and Computations, 1995, 2(2): 344–361
[24] Kigami J, Lapidus M L. Weyl’s problem for the spectral distribution of Laplacians on PCF self-similar fractals. Comm Math Phys, 1993, 158: 93–125 · Zbl 0806.35130 · doi:10.1007/BF02097233
[25] Gauss C F. Disquisitiones arithmeticae. Leipzig, 1801
[26] Courant R, Hilbert D. Methods of Mathematical Physics. 1, Interscience, New York: 1953 · Zbl 0051.28802
[27] Edmunds D E, Evans W D. Spectral theory and differential operators. Oxford 1987 · Zbl 0628.47017
[28] Chen H, Sleeman B D. Estimates for the remainder term in the asymptotics of the counting function for domains with irregular boundaries. Rend Sem Mat Univ Pol Torino, Italy in press · Zbl 0948.35092
[29] Grosswald E. Representations of integers as sums of squares. New York: Springer-Verlag, 1988 · Zbl 0574.10045
[30] Van den Berg M. Dirichlet-Neumann bracketing for horn-shaped regions. J Functional Analysis, 1992, 104: 110–120 · Zbl 0763.35071 · doi:10.1016/0022-1236(92)90092-W
[31] Van den Berg M. On the spectral counting function for the Dirichlet Laplacian. J Functional Analysis, 1992, 107: 352–361 · Zbl 0784.35074 · doi:10.1016/0022-1236(92)90112-V
[32] Van den Berg M, Lianantonakis M. Two-term asymptotics for the counting function for some planar hornshaped regions, Preprint 1995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.