×

The lattice Boltzmann phononic lattice solid. (English) Zbl 0900.73072


MSC:

74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
86A15 Seismology (including tsunami modeling), earthquakes
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
Full Text: DOI

References:

[1] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1:649-707 (1987). · Zbl 0662.76101
[2] S. Crampin, Evidence for aligned cracks in the Earth’s crust,First Break 3:12-15 (1985).
[3] M. Schoenberg and J. Douma, Elastic wave propagation in media with parallel fractures and aligned cracks,Geophys. Prospecting 36:571-590 (1988). · doi:10.1111/j.1365-2478.1988.tb02181.x
[4] D. H. Johnston, M. N. Toksöz, and A. Timur, Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms,Geophysics 44:691-711 (1979). · doi:10.1190/1.1440970
[5] D. d’Humières and P. Lallemand, Numerical simulations of hydrodynamics with lattice gas automata in two dimensions,Complex Systems 1:599-632 (1987).
[6] J. P. Rivet, M. Hénon, U. Frisch, and D. d’Humières, Simulating fully three-dimensional external flow by lattice gas methods, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1988).
[7] D Rothman, Cellular-automaton fluids: A model for flow in porous media,Geophysics 53:509-518.
[8] D. Rothman, Modeling seismic P-waves with cellular automata,Geophys. Res. Lett. 14:17-20 (1987). · doi:10.1029/GL014i001p00017
[9] D. Rothman, Lattice-gas automata for immiscible two-phase flow, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1988).
[10] J. I. Huang, Y. H. Chu, and C. S. Yin, Lattice gas automata for modeling acoustic wave propagation in inhomogeneous media,Geophys. Res. Lett. 15:1239-1241 (1988). · doi:10.1029/GL015i011p01239
[11] P. Mora and B. Maillot, Seismic modeling using the phononic lattice solid method, inExpanded Abstracts of the Society of Exploration Geophysicists Sixtieth Annual Meeting and Exposition (1990).
[12] F. Muir, personal communication.
[13] C. Kittel,Quantum Theory of Solids, 2nd rev. printing (Wiley, New York, 1987).
[14] J. M. Ziman,Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1979). · Zbl 0088.24004
[15] L. D. Landau and E. M. Lifshitz,Course of Theoretical Physics, Vols. 3, 5, 9, and 10, (Pergamon Press). · Zbl 0080.19702
[16] S. Succi, R. Benzi, and F. Higuera, Lattice gas Boltzmann simulations of homogeneous and inhomogeneous hydrodynamics, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1988).
[17] M. Hénon, Viscosity of a lattice gas,Complex Systems 1:762-789. · Zbl 1134.76011
[18] F. J. Higuera, Lattice gas simulation based on the Boltzmann equation, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1988).
[19] P. Mora and B. Maillot, 1992, Numerical studies of the phononic lattice solid macroscopic limit,Phys. Rev. B, submitted.
[20] P. Mora and B. Maillot, 1992, Acoustic theory of phononic lattice solids: A lattice gas like approach for modeling P-waves in inhomogeneous media,J. Geophys. Res., submitted.
[21] C. A. J. Fletcher,Computational techniques for fluid dynamics, Vols. 1 and 2 (Springer-Verlag, 1988). · Zbl 0706.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.