×

The finite irreducible linear groups with polynomial ring of invariants. (English) Zbl 0899.13004

Let \(V\) be a finite dimensional vector space over a field \(K\) and let \(S(V)\) denote the symmetric algebra of \(V\). If \(n=\dim V\) then \(S(V)\) is isomorphic to the polynomial algebra of \(n\) variables over \(K\). Let \(G\subset \text{GL} (V)\) be a finite group. Then the action of \(G\) on \(V\) extends to \(S(V)\). Set \(S(V)^G= \{s\in S(V): g(s) =s\) for all \(g\in G\}\). The problem of determining \(G\) such that \(S(V)^G\) is isomorphic to a polynomial algebra has a long history. If \(\text{char} (K)=0\), the problem was solved in the 50th. This paper provides a full solution of the problem for the case where \(\text{char} (K)= p>0\). A necessary condition was known much earlier: If \(S(V)^G\) is a polynomial algebra then so is \(S(V)^{C(W)}\) for each subspace \(W\subset V\) (here \(C(W)\) denote the centralizer of \(W\) in \(G)\).
The main result of the paper under review proves that this condition is sufficient. If \(G\) contains no transvection, then \(S(V)^G\) is a polynomial algebra if \(C(W)\) is generated by pseudoreflections.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
20G15 Linear algebraic groups over arbitrary fields
14L24 Geometric invariant theory

Software:

SINGULAR; GAP
Full Text: DOI

References:

[1] D. J. Benson,Polynomial Invariants of Finite Groups, LMS Lecture Notes Series, vol. 190, Cambridge University Press, Cambridge,1993. · Zbl 0864.13001
[2] N. Bourbaki,Groupes et Algèbres de Lie, IV, V, VI, Hermann, Paris, 1968.
[3] D. Carlisle and P. H. Kropholler,Rational invariants of certain orthogonal and unitary groups, Bull. London Math. Soc.24 (1992), 57-60. · Zbl 0778.12006 · doi:10.1112/blms/24.1.57
[4] D. Carlisle and P.H. Kropholler,Modular invariants of finite symplectic groups, preprint (1992). · Zbl 0778.12006
[5] C. Chevalley,Invariants of finite groups generated by reflections, Amer. J. Math77 (1955), 778-782. · Zbl 0065.26103 · doi:10.2307/2372597
[6] A. M. Cohen,Finite complex reflection groups, Ann. Scient. Éc. Norm. Sup.9 (1976), 379-436. · Zbl 0359.20029
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson,Atlas of Finite Groups, Clarendon Press, Oxford, 1985. · Zbl 0568.20001
[8] M. Demazure,Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287-301. · Zbl 0269.22010 · doi:10.1007/BF01418790
[9] L. E. Dickson,A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc.12 (1911), 75-98. · JFM 42.0136.01 · doi:10.1090/S0002-9947-1911-1500882-4
[10] G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR,a Computer Algebra System for Singularity Theory, Algebraic Geometry and Commutative A Algebra, Universität Kaiserslautern, Germany. · Zbl 0902.14040
[11] V. Kac, K. Watanabe,Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc.6 (1982), 221-223. · Zbl 0483.14002 · doi:10.1090/S0273-0979-1982-14989-8
[12] W. Kantor,Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc.248 (1979), 347-379. · Zbl 0406.20040 · doi:10.1090/S0002-9947-1979-0522265-1
[13] G. Kemper,A constructive approach to Noether’s problem, Manuscripta Math.90 (1996), 343-363. · Zbl 0865.12005 · doi:10.1007/BF02568311
[14] G. Kemper,Calulating invariant rings of finite groups over arbitrary fields, J. Symbolic Computation21 (1996), 351-366. · Zbl 0889.13004 · doi:10.1006/jsco.1996.0017
[15] H. Nakajima,Invariants of finite groups generated by pseudoreflections in positive characteristic, Tsukuba J. Math.3 (1979), 109-122. · Zbl 0418.20041
[16] M. Schönert (editor), GAP?Groups, Algorithms, and Programming, fourth ed., Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994.
[17] J.-P. Serre,Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’Algèbre ENSJF, Paris, 1967, pp. 8-01-8-11.
[18] G. C. Shephard and J. A. Todd,Finite unitary reflection groups, Canad. J. Math.6 (1954), 274-304. · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[19] L. Smith,Polynomial Invariants of Finite Groups, AK Peters, Wellesley, 1995.
[20] R. Steinberg,Differential equations invariant under finite reflection groups, Trans. Math. Soc.112 (1964), 392-400. · Zbl 0196.39202 · doi:10.1090/S0002-9947-1964-0167535-3
[21] A. Wagner,Groups generated by elations, Abh. Math. Seminar Univ. Hamburg41 (1974), 190-205. · Zbl 0288.20060 · doi:10.1007/BF02993513
[22] A. Wagner,Collineation groups generated by homologies of order greater than 2, Geom. Dedicata7 (1978), 387-398. · Zbl 0402.20036 · doi:10.1007/BF00152059
[23] A. Wagner,Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, I, Geom. Dedicata9 (1980), 239-253; II, ibid. Geom. Dedicata10, 183-189; III, Geom. Dedicata ibid.10, 475-523. · Zbl 0443.51009 · doi:10.1007/BF00147439
[24] C. Xu,Computing invariant polynomials of p-adic reflection groups, Proc. Symp. Appl. Math., vol. 48, Amer. Math. Soc., Providence, 1994. · Zbl 0832.13022
[25] A. E. Zalesskiî and V. N. Sere?kin,Linear groups generated by transvections, Izv. Akad. Nauk SSSR, Ser. Mat.40 (1976), no. 1, 26-49 (in Russian). English translation: A. E. Zalesskiî and V. N. Sere?kin,Linear groups generated by transvections, Math. USSR Izv.10 (1976), 25-46.
[26] A. E. Zalesskiî and V. N. Sere?kin,Finite linear groups generated by reflections, Izv. Akad. Nauk SSSR, Ser. Mat.44 (1980), no. 6, 1279-1307 (in Russian). English translation: A. E. Zalesskiî and V. N. Sere?kin,Finite linear groups generated by reflections, Math. USSR Izv.17 (1981), 477-503.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.