×

From the Boltzmann equation to generalized kinetic models in applied sciences. (English) Zbl 0897.76082

Summary: This paper deals with kinetic-type (Boltzmann) modelling and with the analysis of mathematical problems related to the application of models. We start from a concise report on Boltzmann equation and go to the analysis of models linked to this fundamental equation of nonequilibrium statistical mechanics. Our aim is to provide a guideline towards modelling systems of interest in applied sciences by means of kinetic-type equations.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
00A71 General theory of mathematical modeling
Full Text: DOI

References:

[1] Cercignani, C., Theory and Application of the Boltzmann Equation (1988), Springer · Zbl 0646.76001
[2] Cercignani, C.; Illner, R.; Pulvirenti, M., Theory and Application of the Boltzmann Equation (1993), Springer
[3] Truesdell, C.; Muncaster, R., Fundamentals of Maxwell’s Kinetic Theory of a Simple Monoatomic Gas (1980), Academic Press · Zbl 1515.80001
[4] Bellomo, N.; Palczewski, A.; Toscani, G., Mathematical Topics in Nonlinear Kinetic Theory (1988), World Sci · Zbl 0702.76005
[5] Chorin, A.; Marsden, J., Mathematical Introduction to Fluid Dynamics (1979), Springer · Zbl 0417.76002
[6] Bellomo, N.; Lachowicz, M.; Polewczak, J.; Toscani, G., Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation (1991), World Sci · Zbl 0733.76061
[7] Glassey, R., The Cauchy Problem in Kinetic Theory (1996), SIAM Publ · Zbl 0858.76001
[8] Bellomo, N.; Le Tallec, P.; Perthame, B., On the solution of the nonlinear Boltzmann equation, ASME Review, 48, 777-794 (1995)
[9] Neunzert, H.; Struckmeier, J., Particle methods for the Boltzmann equation, (Acta Numerica 1995 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 417-458 · Zbl 0832.76086
[10] (Bellomo, N., Lecture Notes on the Mathematical Theory of the Boltzmann Equation (1995), World Sci) · Zbl 0871.76074
[11] Arlotti, L.; Bellomo, N., On the Cauchy problem for the nonlinear Boltzmann equation, (Lecture Notes on the Mathematical Theory of the Boltzmann Equation (1995), World Sci), 1-64
[12] DiPerna, R.; Lions, P. L., On the Cauchy problem for the Boltzmann equation: Global existence and weak stability results, Annals Math., 130, 1189-1214 (1990)
[13] DiPerna, R.; Lions, P. L., Global solutions of the Boltzmann and the entropy inequality, Arch. Rat. Mech. Anal., 114, 47-55 (1991) · Zbl 0724.45011
[14] Lions, P. L., Compactness in Boltzmann equation via Fourier integrals operators and applications, J. Math. Kyoto Univ., 34, III, 539-584 (1994) · Zbl 0884.35124
[15] Glassey, R., Global existence of the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119, 353-384 (1988) · Zbl 0673.35070
[16] Glassey, R., On the one and one-half dimensional relativistic Vlasov-Maxwell system, Math. Meth. Appl. Sci., 113, 169-179 (1990) · Zbl 0722.35053
[17] Arkeryd, L.; Cercignani, C., A global existence theorem for the initial-boundary value problem for the Boltzmann equation when boundaries are not isothermal, Arch. Rat. Mech. Anal., 125, 271-287 (1993) · Zbl 0789.76075
[18] Arkeryd, L.; Maslova, N., On diffuse reflection at the boundary for the Boltzmann equation and related equations, J. Statist. Phys., 77, 271-287 (1994) · Zbl 0839.76073
[19] Arkeryd, L.; Nouri, A., Asymptotics of the Boltzmann equation with diffuse reflection boundary conditions, Rapporte Interne Univ. de Nice, 406 (1994) · Zbl 0877.76063
[20] Bellomo, N.; Polewczak, J., On the generalized Boltzmann equation, global existence and exponential trend to equilibrium, Transp. Theory Statist. Phys., 26 (1997), (to appear) · Zbl 0903.35053
[21] Jager, E.; Segel, L., On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl Math., 52, 1442-1468 (1992) · Zbl 0759.92011
[22] Hogeweg, P.; Hesper, P., The ontogeny of the interaction structure in bumble bee colonies, Behav. Ecol. Sociobiol., 12, 183-271 (1983)
[23] Arlotti, L.; Bellomo, N., Population dynamics with stochastic interactions, Transp. Theory Statist. Phys., 24, 431-443 (1995) · Zbl 0838.92018
[24] Arlotti, L.; Bellomo, N., Solution of a new class of nonlinear kinetic models of population dynamics, Appl. Math. Letters, 9, 2, 65-70 (1996) · Zbl 0853.35050
[25] Hoppenstead, F., Mathematical theory of populations: Demographic, genetics and epidemics, (SIAM Conf. Series, 2 (1975)) · Zbl 0304.92012
[26] Canada, A.; Zertiti, A., Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth, Math. Models Meth. Appl. Sci., 4, 107-120 (1994) · Zbl 0817.92013
[27] Preziosi, L., From population dynamics to modelling the competition between tumors and immune system, Comp. Math. Modelling, 23, 135-152 (1996) · Zbl 0897.92016
[28] (Forni, G.; Foa, R.; Santoni, A.; Frati, L., Cytokine Induced Tumor Immunogeneticity (1994), Academic Press)
[29] Bellomo, N.; Forni, G., Dynamics of tumor interaction with the host immune system, Mathl. Comput. Modelling, 20, 1, 107-122 (1994) · Zbl 0811.92014
[30] Bellomo, N.; Forni, G.; Preziosi, L., On a kinetic (cellular) theory for the competition between tumors and host-immune system, J. Biol. Systems, 4, 479-502 (1996)
[31] Bellomo, N.; Firmani, B.; Guerri, L.; Preziosi, L., On a kinetic theory of Cytokine mediated interaction between tumors and immune system, ARI Journal, 1 (1997), (to appear)
[32] (Adam, J.; Bellomo, N., A Survey of Models on Tumor Immune Systems Dynamics (1996), Birkhäuser)
[33] Arlotti, L.; Lachowicz, M., Qualitative analysis of a nonlinear integro-differential equation modelling tumor-host dynamics, Mathl. Comput. Modelling, 23, 6, 11-30 (1996) · Zbl 0859.92011
[34] Lo Schiavo, M., Discrete kinetic cellular models of tumors immune system interactions, Math. Models Meth. Appl. Sci., 6, 1187-1210 (1996) · Zbl 0874.92022
[35] De Boer, R. J.; Segel, L.; Perelson, S., Pattern formation in one or two dimensional shape-space models of the immune system, J. Theor. Biol., 155, 295-333 (1992)
[36] De Boer, R. J.; Boerlijst, M. C.; Sulzer, B.; Perelson, S., A new bell shaped functions for idiotypic interactions based on cross linking, Bull. Math. Biol., 58, 285-312 (1996) · Zbl 0853.92006
[37] Segel, L. A.; Perelson, A. S., Computations in shape space: A new approach to immune network theory, (Perelson, A. S., Theoretical Immunology, Part Two, SFI Studies in the Science of Complexity (1988), Addison-Wesley), 321-342
[38] Bellomo, N.; Lachowicz, M.; Polewczak, J., On the evolution of the generalized shape in immunology: Qualitative analysis of the solutions to Segel-Perelson model, Appl. Math. Letters, 10, 4, 53-58 (1997) · Zbl 0898.92017
[39] Prigogine, I.; Herman, R., Kinetic Theory of Vehicular Traffic (1971), Elsevier · Zbl 0226.90011
[40] Lampis, M., On the kinetic theory of traffic flow in the case of a non negligible number of queuing vehicles, Transport. Science, 12, 16-28 (1978)
[41] Paveri Fontana, S., On Boltzmann like treatment of vehicular traffic, Transport. Science, 9, 225-235 (1975)
[42] Belleni Morante, A., Nonlinear kinetic theory of vehicular traffic, J. Math. Anal. Appl., 47, 443-457 (1974) · Zbl 0297.45009
[43] Nelson, P., A kinetic model of vehicular traffic associated to bimodal distribution, Transp. Theory Statist. Phys., 24, 39-383 (1995) · Zbl 0817.90028
[44] Klar, A.; Küne, R. D.; Wegner, R., Mathematical models for vehicular traffic, (Surveys Math. Ind., Int. Report 95-158 (1995), Arbeitsgruppe Technomathematik, Univ. Kaiserslautern), (to appear)
[45] Klar, A.; Wegner, R., Enskog-like models for vehicular traffic, J. Statist. Phys., 87, 91-114 (1996) · Zbl 0917.90124
[46] Wegener, R.; Klar, A., A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transp. Theory Statist. Phys., 25, 785-798 (1996) · Zbl 1467.82077
[47] Preziosi, L.; de Socio, L., A nonlinear invverse phase transiton problem for the heat equation, Math. Models Meth. Appl. Sci., 1, 1187-1210 (1991)
[48] Bellomo, N.; Preziosi, L., Modelling Mathematical Methods and Scientific Computation (1995), CRC Press · Zbl 0871.65001
[49] White, W. H., Global existence theorem for Smoluchowski’s coagulation equation, (Proc. Amer. Math. Soc., 80 (1980)), 273-276 · Zbl 0442.34003
[50] Stewart, I. W., A global existence theorem for the general coagulation fragmentation equation with unbounded kernels, Math. Meth. Appl. Sci., 11, 627-648 (1989) · Zbl 0683.45006
[51] Stewart, I. W., On the coagulation fragmentation equation, J. Appl. Math. Phys., 41, 917-924 (1990) · Zbl 0734.45009
[52] Stewart, I. W., Density conservation for a coagulation equation, J. Appl. Math. Phys., 42, 746-756 (1991) · Zbl 0752.45016
[53] Stewart, I. W.; Dubovskii, P. B., Approach to equilibrium for the coagulation fragmentation equation via a Lyapunov functional, Math. Meth. Appl. Sci., 19, 171-185 (1996) · Zbl 0840.45010
[54] Ackleh, A. S.; Fitzpatrick, B. G.; Hallam, T. G., Approximation and parameter estimation problems for algal aggregation models, Math. Models Meth. Appl. Sci., 4, 291-311 (1994) · Zbl 0823.92029
[55] Collet, J.; Popoud, F., Existence of solutions to coagulation-fragmentation systems with diffusion, Transp. Theory Statist. Phys., 25, 503-513 (1996) · Zbl 0870.35117
[56] Wrzosek, D., Existence of solutions for the discrete coagulation fragmentation model with diffusion, Int. Report 96-04 (16) of the Inst. of Appl. Mathematics University of Warsaw (1996)
[57] Slemrod, M.; Qi, A., A discrete velocity coagulation fragmentation model, Math. Models Meth. Appl. Sci., 5, 619-640 (1995) · Zbl 0833.76067
[58] Esteban, M.; Perthame, B., Solutions globale de l’équation d’Enskog modifiée avec collisions élastique ou inélastique, Comp. Rend. Acad. Sci. Paris, 309, 897-902 (1989) · Zbl 0706.35133
[59] Esteban, M.; Perthame, B., On the modified Enskog equation for elastic and inelastic collisions. Models with Spin, Ann. Inst. Poincaré, 8, 289-308 (1991) · Zbl 0850.70141
[60] Araki, S.; Tremaine, S., The dynamics of dense particle disks, Icarus, 65, 83-109 (1986)
[61] Araki, S., The dynamics of dense particle disks—Effects of Spin degrees of freedom, Icarus, 65, 182-198 (1988)
[62] Bellomo, N.; Esteban, M.; Lachowicz, M., Nonlinear kinetic equations with dissipative collisions, Appl. Math. Lett., 8, 5, 47-52 (1995) · Zbl 0835.76091
[63] Russo, G.; Smereka, P., Kinetic theory of bubbly flow I: Collisionless case, SIAM J. Appl. Math., 56, 327-357 (1996) · Zbl 0857.76090
[64] Russo, G.; Smereka, P., Kinetic theory of bubbly flow II: Collisionless case, SIAM J. Appl. Math., 56, 357-371 (1996) · Zbl 0857.76090
[65] Lachowicz, M., Asymptotic analysis of nonlinear kinetic equations—The hydrodynamic limit, (Bellomo, N., Lectures Notes on the Mathematical Theory of the Boltzmann Equation (1995), World Sci), 65-148
[66] Markowich, P.; Ringhofer, C.; Schmeiser, C., Semiconductor Equations (1989), Springer · Zbl 0667.65098
[67] Kersch, A.; Morokoff, J., Transport Simulation in Microelectronics (1995), Birkhäuser · Zbl 0828.76001
[68] Ben Abdallah, N.; Degond, P., On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37, 3306-3333 (1966) · Zbl 0868.45006
[69] Ben Abdallah, N.; Degond, P., An energy-transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys., 84, 205-231 (1966) · Zbl 1081.82610
[70] Kaniadakis, G.; Quarati, P., Classical models of bosons and fermions, Phys. Review E, 49, 5103-5110 (1994)
[71] Kaniadakis, G., Classical models of intermediate statistics, Phys. Review E, 49, 5111-5116 (1994)
[72] Niclot, B.; Degond, P.; Poupaud, F., Deterministic particle simulation of the Boltzmann transport equation of semiconductors, J. Comp. Phys., 78, 313-349 (1990) · Zbl 0662.65126
[73] Degond, P.; Guyot-Delaurens, F., Particle simulation of the semiconductor Boltzmann equation for one-dimensional inhomogeneous structures, J. Comp. Phys., 90, 65-97 (1990) · Zbl 0731.65121
[74] Popaud, F., Mathematical theory of kinetic equations for transport modelling in semiconductors, (Perthame, B., Kinetic Theory and Computing (1994), World Sci) · Zbl 0863.76075
[75] Buet, C., A discrete velocity scheme for the Boltzmann operator of rarefied gas-dynamics, Transp. Theory Statist. Phys., 25, 33-60 (1996) · Zbl 0857.76079
[76] Buet, C., Conservative and entropy schemes for Boltzmann collision operator of polyatomic gases, Math. Models Meth. Appl. Sci., 7, 165-192 (1997) · Zbl 0872.76085
[77] Preziosi, L.; Longo, E., The semicontinuous Boltzmann equation, Math. Models Meth. Appl. Sci., 3, 65-94 (1993) · Zbl 0770.76057
[78] L. Preziosi and E. Longo, On a conservative polar discretization of the Boltzmann equation, Japan J. Ind. Appl. Math, (to appear).; L. Preziosi and E. Longo, On a conservative polar discretization of the Boltzmann equation, Japan J. Ind. Appl. Math, (to appear). · Zbl 0895.76070
[79] Arlotti, L.; Lachowicz, M., On the hydrodynamic limit for quantum kinetic equations, Comp. Rend. Acad. Science Paris, 323, 101-106 (1996) · Zbl 0856.76071
[80] Lachowicz, M., From kinetic to Navier-Stokes type equations, Appl. Math. Lett., 10, 5, 19-24 (1997) · Zbl 0897.76004
[81] Fuchs, F.; Poupaud, F., Asymptotical and numerical analysis of degeneracy effects on the drift-diffusion equations for semiconductors, Math. Models Meth. Appl. Sci., 5, 1093-1111 (1995) · Zbl 0847.76076
[82] Lange, H.; Toomire, V.; Zweifel, P., A survey of Wiegner-Poisson problems, (Operator Theory: Advances and Applications, Volume 70 (1993), Birkhäuser), 239-256 · Zbl 0826.35104
[83] Lange, H.; Toomire, H.; Zweifel, P., Time-dependent dissipation in nonlinear Schrödinger equation, J. Math. Phys., 36, 1274-1283 (1995) · Zbl 0823.35159
[84] Lange, H.; Zweifel, P., Quantum BGK models for the Wiegner-Poisson equation, Transp. Theory Statist. Phys., 25, 713-722 (1996) · Zbl 0869.35087
[85] Zweifel, P., The Wiegner transform and the Wiegner-Poisson system, Transp. Theory Statist. Phys., 22, 459-484 (1993) · Zbl 0785.35102
[86] Zweifel, P., The Wiegner-Poisson system: A quantum transport equation, Reports Math. Phys., 33, 317-323 (1993) · Zbl 0811.35114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.