×

Piecewise convex function estimation: Pilot estimators. (English) Zbl 0895.62044

Summary: Given noisy data, function estimation is considered when the unknown function is known a priori to be either convex or concave on each of a small number of regions of the function. When the number of regions is unknown, the model selection problem is to determine the number of convexity change points. For kernel estimates in Gaussian noise, the number of false change points is evaluated as a function of the smoothing parameter. To insure that the number of false convexity change points tends to zero, the smoothing level must be larger than is generically optimal for minimizing the mean integrated square error (MISE).
A two-stage estimator is proposed and shown to achieve the optimal rate of convergence of the MISE. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MISE. The imposed constraint is that a single change point occurs in a region about each empirical change point from the first-stage estimate. This constraint is equivalent to the requirement that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. The change points from the second stage are first-stage change points, but need not be at the identical locations.

MSC:

62G07 Density estimation
65D10 Numerical smoothing, curve fitting
65D07 Numerical computation using splines
60G35 Signal detection and filtering (aspects of stochastic processes)

References:

[1] Cox, D. D. (1984). Multivariate smoothing splines functions. SIAM J. Numer. Anal. 21 789- 813. JSTOR: · Zbl 0581.65012 · doi:10.1137/0721053
[2] Gasser, Th. and M üller, H. (1984). Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 171-185. · Zbl 0548.62028
[3] Good, I. J. and Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering data. J. Amer. Statist. Assoc. 75 43-73. · Zbl 0432.62024 · doi:10.2307/2287377
[4] Härdle, W., Hall, P. and Marron, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? J. Amer. Statist. Assoc. 83 86-101. · Zbl 0644.62048 · doi:10.2307/2288922
[5] Li, W., Naik, D. and Swetits, J. (1996). A data smoothing technique for piecewise convex/ concave curves. SIAM J. Sci. Comput. 17 517-537. · Zbl 0841.62031 · doi:10.1137/S1064827592239822
[6] Mächler, M. (1995). Variational solution of penalized likelihood problems and smooth curve estimation. Ann. Statist. 23 1496-1517. · Zbl 0843.62044 · doi:10.1214/aos/1176324309
[7] Mammen, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann. Statist. 19 741-759. · Zbl 0737.62039 · doi:10.1214/aos/1176348118
[8] Mammen, E. (1995). On qualitative smoothness of kernel density estimates. Statistics 26 253-267. · Zbl 0811.62046 · doi:10.1080/02331889508802494
[9] Mammen, E., Marron, J. S. and Fisher, N. J. (1992). Some asy mptotics for multimodal tests based on kernel density estimates. Probab. Theory Related Fields 91 115-132. · Zbl 0745.62048 · doi:10.1007/BF01194493
[10] Michelli, C. A. and Utreras, F. (1985). Smoothing and interpolation in a convex set of Hilbert space. SIAM J. Statist. Sci. Comput. 9 728-746. · Zbl 0651.65046 · doi:10.1137/0909048
[11] M üller, H. G. (1985). Kernel estimators of zeros and of the location and size of extrema of regression functions. Scand. J. Statist. 12 221-232. · Zbl 0571.62032
[12] Niederrieter, H. (1992). Random Number Generators and Quasi-Monte Carlo Methods. · Zbl 0761.65002
[13] SIAM, Philadelphia.
[14] Ragozin, D. L. (1983). Error bounds for derivative estimation based on spline smoothing of exact or noisy data. J. Approx. Theory. 37 335-355. · Zbl 0531.41011 · doi:10.1016/0021-9045(83)90042-4
[15] Riedel, K. S. (1995). Piecewise convex function estimation and model selection. In Proceedings of Approximation Theory VIII (C. K. Chui and L. L. Schumaker, eds.) 467-475. World Scientific, Singapore. · Zbl 1066.41503
[16] Riedel, K. S. (1997). Improved asy mptotics for zeros of kernel estimates via a reformulation of the Leadbetter-Cry er integral. Statist. Probab. Lett. 32 351-356. · Zbl 0894.62043 · doi:10.1016/S0167-7152(96)00094-6
[17] Silverman, B. W. (1983). Some properties of a test for multimodality based on kernel density estimates. In Probability, Statistics and Analy sis (J. F. C. Kingman and G. E. H. Reuter, eds.) 248-259. Cambridge Univ. Press. · Zbl 0504.62036
[18] Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist. 12 898-916. · Zbl 0547.62024 · doi:10.1214/aos/1176346710
[19] Utreras, F. (1985). Smoothing noisy data under monotonicity constraints-existence, characterization and convergence rates. Numer. Math. 47 611-625. · Zbl 0606.65006 · doi:10.1007/BF01389460
[20] Villalobos, M. and Wahba, G. (1987). Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities. J. Amer. Statist. Assoc. 82 239-248. JSTOR: · Zbl 0614.62047 · doi:10.2307/2289160
[21] Wahba, G. (1991). Spline Models for Observational Data. SIAM, Philadelphia. · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.