×

Superefficiency in nonparametric function estimation. (English) Zbl 0895.62043

Summary: Fixed parameter asymptotic statements are often used in the context of nonparametric curve estimation problems (e.g., nonparametric density or regression estimation). In this context several forms of superefficiency can occur. In contrast to what can happen in regular parametric problems, here every parameter point (e.g., unknown density or regression function) can be a point of superefficiency. We begin with an example which shows how fixed parameter asymptotic statements have often appeared in the study of adaptive kernel estimators, and how superefficiency can occur in this context. We then carry out a more systematic study of such fixed parameter statements. It is shown in four general settings how the degree of superefficiency attainable depends on the structural assumptions in each case.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
62B15 Theory of statistical experiments
62M05 Markov processes: estimation; hidden Markov models
Full Text: DOI

References:

[1] ABRAMSON, I. S. 1982. Bandwidth variation in kernel estimates a square root law. Ann. Statist. 10 1217 1223. Z. · Zbl 0507.62040 · doi:10.1214/aos/1176345986
[2] BERGER, J. O. 1985. Statistical Decision Theory and Bayesian Analy sis. Springer, New York. Z. · Zbl 0572.62008
[3] BICKEL, P. J. 1981. Minimax estimation of the mean of a normal distribution when the parameter space is restricted. Ann. Statist. 9 1301 1309. Z. · Zbl 0484.62013 · doi:10.1214/aos/1176345646
[4] BROCKMANN, M., GASSER, T. and HERRMAN, E. 1993. Locally adaptive bandwidth choice for kernel regression estimators, J. Amer. Statist. Assoc. 88 1302 1309. Z. JSTOR: · Zbl 0792.62028 · doi:10.2307/2291270
[5] BROWN, L. D. 1986. Fundamentals of statistical exponential families with applications in statistical decision theory. IMS, Hay ward, CA. Z. · Zbl 0685.62002
[6] BROWN, L. D. 1992. An information inequality for the Bay es risk under truncated squared error Z. loss. In Multivariate Analy sis: Future Directions C. R. Rao, ed. 85 94. NorthHolland, Amsterdam.Z. · Zbl 0798.62012
[7] BROWN, L. D. and FARRELL, R. 1990. A lower bound for the risk in estimating the value of a probability density. J. Amer. Statist. Assoc. 85 1147 1153. Z. JSTOR: · Zbl 0717.62031 · doi:10.2307/2289614
[8] BROWN, L. D. and GAJEK, L. 1990. Information inequalities for the Bay es risk. Ann. Statist. 18 1578 1594. Z. · Zbl 0722.62003 · doi:10.1214/aos/1176347867
[9] BROWN, L. D. and LOW, M. G. 1996a. Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384 2398. Z. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[10] BROWN, L. D. and LOW, M. G. 1996b. A constrained risk inequality with applications to nonparametric functional estimation. Ann. Statist. 24 2524 2535. Z. · Zbl 0867.62023 · doi:10.1214/aos/1032181166
[11] DONOHO, D. L. and LIU, R. C. 1991a. Geometrizing rates of convergence II. Ann. Statist. 19 633 667. Z. · Zbl 0754.62028 · doi:10.1109/18.959265
[12] DONOHO, D. L. and LIU, R. C. 1991b. Geometrizing rates of convergence III. Ann. Statist. 19 668 701. Z. · Zbl 0754.62029 · doi:10.1109/18.959265
[13] DONOHO, D. L., LIU, R. C. and MACGIBBON, B. 1990. Minimax risks over hy perrectangles, and implications. Ann. Statist. 18 1416 1437. Z. · Zbl 0705.62018 · doi:10.1214/aos/1176347758
[14] EFROMOVICH, S. and PINSKER, M. S. 1984. Self learning algorithm of nonparametric filtration. Z. Avtomat. i Telemekh. 11 58 65. In Russian.
[15] HAJEK, J. 1972. Local asy mptotic minimax and admissibility in estimation. Proc. Sixth Berkeĺey Sy mp. Math. Statist. Probab. 1 175 194. Univ. California Press, Berkeley. Z.
[16] HALL, P. 1993. On plug-in rules for local smoothing of density estimates. Ann. Statist. 21 694 710. Z. Z. · Zbl 0779.62035 · doi:10.1214/aos/1176349145
[17] HUBER, P. J. 1966. Strict efficiency excludes superefficiency abstract. Ann. Math. Statist. 37 1425. Z.
[18] HUBER, P. J. 1981. Robust Statistics. Wiley, New York. Z. · Zbl 0536.62025
[19] LE CAM, L. 1953. On some asy mptotic properties of maximum likelihood estimates and related Bay es estimates. University of California Publications in Statistics 1 277 330. Z.
[20] LEHMANN, E. L. 1983. Theory of Point Estimation. Wiley, New York. Z. · Zbl 0522.62020
[21] NUSSBAUM, M. 1996. Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399 2430. Z. · Zbl 0867.62035 · doi:10.1214/aos/1032181160
[22] SCHUCANY, W. R. 1995. Adaptive bandwidth choice for kernel regression. J. Amer. Statist. Assoc. 90 535 540. Z. JSTOR: · Zbl 0826.62027 · doi:10.2307/2291064
[23] STEIN, C. 1966. An approach to the recovery of inter-block information in balanced incomplete Z block designs. Research Papers in Statistics: Festschrift for Jerzy Ney man F. N.. David, ed. 351 366. Wiley, London. Z. · Zbl 0156.40201
[24] WEISS, L. and WOLFOWITZ, J. 1966. Generalized maximum likelihood estimators. Theory Probab. Appl. 11 58 81. Z. · Zbl 0183.21202 · doi:10.1137/1111003
[25] WOODROOFE, M. 1970. On choosing a delta-sequence. Ann. Math. Statist. 41 1665 1671. · Zbl 0229.62022 · doi:10.1214/aoms/1177696810
[26] PHILADELPHIA, PENNSy LVANIA 19104 E-MAIL: lbrown@compstat.wharton.upenn.edu lowm@compstat.wharton.upenn.edu lzhao@compstat.wharton.upenn.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.