×

Symm’s log kernel integral operators. (English) Zbl 0895.45002

The author considers the integral equation with the logarithmic kernel \[ \pi^{-1} \int_{-1}^1 f(s) \ln | t-s| ds = g(t),\quad t \in (-1,1) \tag{1} \] which is called Symm’s log integral equation in the paper. He describes the range of this operator in the space \(L_{p,\rho} (-1,1)\) with the power weight \(\rho =(1-x)^\alpha (1+x)^\beta\) where \(1<p<\infty\) and \(\alpha ,\beta \in (-1,1)\). The application to the solvability of the singular integral equation is also given.
Rewiever’s remark. It should be noted that the equation (1) is very well known in the theory of integral equations as the Carleman integral equation. T. Carleman was the first who considered this equation [Zur Theorie der linearen Integralgleichungen, Math. Z. 9, 196-217 (1921; JFM 48.1249.01), pp. 196-197]. Equation (1) and more general (for example) \[ A(t)\int_a^t f(s) ds + B(t)\int_t^b f(s) ds + C(t) \int_a^b f(s) \ln | t-s| ds = g(t), \quad t \in (a,b) \] were widely investigated by S. G. Samko [see: Metody Otobrazhenij, Groznyj 1976, 41-69 (1976; Zbl 0449.45002); Mathematical analysis and its applications, Work Collect., Rostov 1978, 103-121 (1978; Zbl 0449.45003)]. The first of the mentioned papers contains many references (more than 75) to previous investigations on the topic. Further investigation (including multidimensional case) may be found, for example, in the papers of A. A. Kilbas, [Complex analysis and applications, Proc. Int. Conf., Varna/Bulg. 1981, 537-548 (1984; Zbl 0582.45010)] and S. I. Vasilets [Dokl. Akad. Nauk BSSR 33, No. 9, 777-780 (1989; Zbl 0681.45002)]. See also A. A. Kilbas, M. Saigo and S. I. Vasilets [Solution of an integral equation of the first kind with a logarithmic kernel and internal coefficients, Fukuoka Univ. Sci. Reports, Vol. 25, No. 2, 69-87 (1995)] and references in this paper.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)

References:

[1] D. Berthold, W. Hoppe and B. Silbermann, The numerical solution of the generalized airfoil equation , J. Integral Equations Appl. 4 (1992), 309-336. · Zbl 0762.65091 · doi:10.1216/jiea/1181075695
[2] P.L. Butzer and R.J. Nessel, Fourier analysis and approximation theory , Vol. I, Birkhauser Verlag, Basel, 1977.
[3] J. Diestel and J.J. Uhl, Jr., Vector measures , Math. Surveys 15 , Amer. Math. Soc., Providence, 1977. · Zbl 0369.46039
[4] R. Estrada and R.P. Kanwal, Integral equations with logarithmic kernels , IMA J. Appl. Math. 43 (1989), 133-155. · Zbl 0684.45005 · doi:10.1093/imamat/43.2.133
[5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations , Vol. II, General theory and applications , Birkhäuser Verlag, Basel, 1992. · Zbl 0781.47038
[6] E. Hewitt and K. Stromberg, Real and abstract analysis , Springer Verlag, Berlin, 1969. · Zbl 0225.26001
[7] K. Jörgens, Linear integral equations , English transl., Pitman, Boston, 1982.
[8] K. Kober, A note on Hilbert’s operator , Bull. Amer. Math. Soc. 48 (1942), 421-427. · Zbl 0063.03274 · doi:10.1090/S0002-9904-1942-07688-9
[9] S.G. Mikhlin and S. Pröß dorf, Singular integral operators , English transl., Springer Verlag, New York, 1986.
[10] S. Okada and D. Elliott, The finite Hilbert transform in \(\L^2\) , Math. Nachr. 153 (1991), 43-56. · Zbl 0811.47022 · doi:10.1002/mana.19911530105
[11] J.B. Reade, Asymptotic behaviour of eigen-values of certain integral equations , Proc. Edinburgh Math. Soc., Sect. A 22 (1979), 137-144. · Zbl 0414.45003 · doi:10.1017/S0013091500016254
[12] M. Reed and B. Simon, Methods of modern mathematical physics : Vol. I, Functional analysis , Academic Press, New York, 1972. · Zbl 0242.46001
[13] M. Schleiff, Über eine singuläre Integralgleichung mit logarithmischem Zusatzkern , Math. Nachr. 42 (1968), 79-88. · Zbl 0184.33505 · doi:10.1002/mana.19690420106
[14] ——–, Singuläre Integraloperatoren in Hilbert-Räumen mit Gewichtsfunktion , Math. Nachr. 42 (1968), 145-155. · Zbl 0184.33506 · doi:10.1002/mana.19690420110
[15] I.H. Sloan and E.P. Stephan, Collocation with Chebyshev polynomials for Symm’s integral equation on an interval , J. Austral. Math. Soc. Series B 34 (1992), 199-211. · Zbl 0760.65130 · doi:10.1017/S0334270000008729
[16] G.T. Symm, Integral equation methods in potential theory II, Proc. Roy. Soc. London, Sect. A 275 (1963), 33-46. · Zbl 0112.33201 · doi:10.1098/rspa.1963.0153
[17] G.E.F. Thomas, Integration of functions with values in locally convex Suslin spaces , Trans. Amer. Math. Soc. 212 (1978), 61-81. · Zbl 0312.28014 · doi:10.2307/1998613
[18] F. Treves, Topological vector spaces, distributions and kernels , Academic Press, New York, 1967. · Zbl 0171.10402
[19] F.G. Tricomi, Integral equations , Interscience, New York, 1957. · Zbl 0078.09404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.