×

The subgroups of \(M_{24}\), or how to compute the table of marks of a finite group. (English) Zbl 0895.20017

The table of marks, introduced by Burnside in 1911, provides a way of describing the lattice of subgroups of a group. Each ‘mark’ is the number of fixed points of the action of one subgroup, \(U\) say, on the cosets of another, \(V\) say. Since this is invariant under conjugation of either \(U\) or \(V\), the number of rows (and columns) of the table is equal to the number of conjugacy classes of subgroups.
Even for groups of moderate size, this can be a very large table, and its computation provides something of a challenge. The present paper describes a semiautomatic procedure for determining the table by induction from the maximal subgroups. The crucial step in the induction is to determine when two subgroups of two (not necessarily distinct) maximal subgroups are actually conjugate in the whole group – this is achieved by a process of successive approximation, during which some extra specific information about the group may be needed.
The example of \(M_{24}\) is described in some detail, and a list of other results appended. Finally some applications are briefly described. For example, the number of generating subsets of size \(m\) can be determined by a Möbius inversion – the author illustrates this by proving the well-known fact that \(A_5\) has exactly 19 conjugacy classes of pairs of generators.

MSC:

20D30 Series and lattices of subgroups
20C40 Computational methods (representations of groups) (MSC2010)
20D08 Simple groups: sporadic groups
20F05 Generators, relations, and presentations of groups
20E28 Maximal subgroups

Software:

GAP

Online Encyclopedia of Integer Sequences:

Orders of subgroups of M24.

References:

[1] Bianchi M. G., Istit. Lombardo Accad. Sci. Lett. Rend. A 124 pp 99– (1990)
[2] Buekenhout F., Math. Comp. 50 (182) pp 595– (1988)
[3] Burnside W., Theory of groups of finite order,, 2. ed. (1911) · JFM 42.0151.02
[4] Choi C., Trans. Amer. Math. Soc. 167 pp 1– (1972)
[5] Choi C., Trans. Amer. Math. Soc. 167 pp 29– (1972)
[6] Conway J. H., Finite simple groups pp 215– (1971)
[7] Conway J. H., Atlas of finite groups (1985)
[8] Curtis R. T., Math. Proc. Cambridge Philos. Soc. 79 (1) pp 25– (1976) · Zbl 0321.05018 · doi:10.1017/S0305004100052075
[9] Curtis R. T., Math. Proc. Cambridge Philos. Soc. 81 (2) pp 185– (1977) · Zbl 0364.20006 · doi:10.1017/S0305004100053251
[10] Diawara O., Simon Stevin 61 pp 3– (1987)
[11] DOI: 10.1007/BF01110213 · Zbl 0174.30806 · doi:10.1007/BF01110213
[12] Felsch V., Computational group theory pp 137– (1984)
[13] Greenberg P. J., Mathieu groups (1973)
[14] DOI: 10.1093/qmath/os-7.1.134 · Zbl 0014.10402 · doi:10.1093/qmath/os-7.1.134
[15] DOI: 10.1216/RMJ-1989-19-4-1003 · Zbl 0708.20005 · doi:10.1216/RMJ-1989-19-4-1003
[16] Isaacs I. M., Character theory of finite groups (1994) · Zbl 0849.20004
[17] Kerber A., Algebraic combinatorics via finite group actions (1991) · Zbl 0726.05002
[18] DOI: 10.1080/00927878608823389 · Zbl 0598.20013 · doi:10.1080/00927878608823389
[19] Pahlings H., Bayreuth. Math. Schr. 23 pp 135– (1987)
[20] Pahlings H., Arch. Math. (Basel) 60 (1) pp 7– (1993) · Zbl 0738.20025 · doi:10.1007/BF01194232
[21] Pfeiffer G., Von Permutationscharak-teren und Markentafeln (1991)
[22] Pfeiffer G., ”The subgroups of M24” (1995)
[23] DOI: 10.1007/BF00531932 · Zbl 0121.02406 · doi:10.1007/BF00531932
[24] Schönert M., GAP: Groups, algorithms, and programming (1994)
[25] Todd J. A., Ann. Mat. Pura Appl. (4) 71 pp 199– (1966) · Zbl 0144.26204 · doi:10.1007/BF02413742
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.