×

Stability of hierarchical interfaces in a random field model. (English) Zbl 0893.60071

Summary: We study a hierarchical model for interfaces in a random-field ferromagnet. We prove that in dimension \(D>3\), at low temperatures and for weak disorder, such interfaces are rigid. Our proof uses renormalization group transformations for stochastic sequences.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] M. Aizenman and J. Wehr,Phys. Rev. Lett. 21:2503 (1989);Commun. Math. Phys. 130:489 (1990). · doi:10.1103/PhysRevLett.62.2503
[2] A. Bovier, J. Fröhlich, and U. Glaus, Lines and domain walls in dilute ferromagnets,Phys. Rev. B 34:6409 (1986). · doi:10.1103/PhysRevB.34.6409
[3] J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model,Commun. Math. Phys. 116:539 (1988). · Zbl 1086.82573 · doi:10.1007/BF01224901
[4] J. Bricmont and A. Kupiainen, The hierarchical random field Ising model,J. Stat. Phys. 51:1021 (1988). · Zbl 1086.82573 · doi:10.1007/BF01014898
[5] E. Brezin and H. Orland, unpublished (1986).
[6] A. Bovier and C. Külske,Commun. Math. Phys. (1992).
[7] A. Bovier and P. Picco, Stability of interfaces in random environments: A renormalization group analysis of a hierarchical model,J. Stat. Phys. 62:177 (1991). · doi:10.1007/BF01020865
[8] J. T. Chalker,J. Phys. C 16:6615 (1983). · doi:10.1088/0022-3719/16/34/011
[9] R. Dobrushin, Gibbs state describing coexistence of phases for a three dimensional Ising model,Theor. Prob. Appl. 17:582 (1972). · Zbl 0275.60119 · doi:10.1137/1117073
[10] D. Fisher,Phys. Rev. Lett. 56:1964 (1986). · doi:10.1103/PhysRevLett.56.1964
[11] D. S. Fisher, J. Fröhlich, and T. Spencer,J. Stat. Phys. 24:863 (1984). · doi:10.1007/BF01009445
[12] G. Forgacs, R. Lipowsky, and Th. M. Nieuwenhuizen, The behavior of interfaces in ordered and disordered systems, inPhase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1991).
[13] G. Gallavotti,Commun. Math. Phys. 27:103 (1972). · doi:10.1007/BF01645615
[14] T. Halpin-Healy,Phys. Rev. Lett. 62:442 (1989). · doi:10.1103/PhysRevLett.62.442
[15] J. Imbrie,Phys. Rev. Lett. 53:1747 (1984). · doi:10.1103/PhysRevLett.53.1747
[16] Y. Imry and S. Ma,Phys. Rev. Lett. 35:1399 (1975). · doi:10.1103/PhysRevLett.35.1399
[17] M. Mézard and G. Parisi, Interfaces in a random medium and replica symmetry breaking,J. Phys. A 23:L1229 (1990). · doi:10.1088/0305-4470/23/23/008
[18] T. Nattermann,Phys. Stat. Sol. 129:153 (1985);Phys. Stat. Sol. B 132:125 (1985). · doi:10.1002/pssb.2221290115
[19] W. Stout,Almost Sure Convergence (Academic Press, New York, 1974). · Zbl 0321.60022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.