×

Reducible classes of finite lattices. (English) Zbl 0891.06001

Authors’ summary: We study a notion of reducibility in finite lattices. An element \(x\) of a (finite) lattice \(L\) satisfying certain properties is deletable if \(L-x\) is a lattice satisfying the same properties. A class of lattices is reducible if each lattice of this class admits (at least) one deletable element (equivalently if one can go from any lattice in this class to the trivial lattice by a sequence of lattices of the class obtained by deleting one element in each step). First we characterize the deletable elements in a pseudocomplemented lattice what allows to prove that the class of pseudocomplemented lattices is reducible. Then we characterize the deletable elements in semimodular, modular and distributive lattices what allows to prove that the classes of semimodular and locally distributive lattices are reducible. In conclusion the notion of reducibility for a class of lattices is compared with some other notions like the notion of order variety.

MSC:

06B05 Structure theory of lattices
06C10 Semimodular lattices, geometric lattices
06D15 Pseudocomplemented lattices
06C05 Modular lattices, Desarguesian lattices
06D05 Structure and representation theory of distributive lattices
Full Text: DOI

References:

[1] Chameni-Nembua, C. and Monjardet, B. (1992) Les treillis pseudocomplémenté finis, European J. of Combinatorics 13, 89-107. · Zbl 0759.06010 · doi:10.1016/0195-6698(92)90041-W
[2] Davey, B. A. and Priestley, H. A. (1990) Introduction to Lattices and Order, Cambridge University Press. · Zbl 0701.06001
[3] Duffus, D. and Rival, I. (1976) Crowns in dismantable partially ordered sets, Coll. Math. Soc. J. Bolyai 18, 271-292.
[4] Duffus, D. and Rival, I. (1981) A structure theory for ordered sets, Discr. Math. 35, 53-118. · Zbl 0459.06002 · doi:10.1016/0012-365X(81)90201-6
[5] Duquenne, V. and Cherfouh, A. (1994) On permutation lattices, Mathematical Social Sciences 27(1), 73-89. · Zbl 0874.06006 · doi:10.1016/0165-4896(94)00733-0
[6] Kelly, D. and Rival, I. (1974) Crowns, fences and dismantable lattices, Can. J. Math. 26 1257-1271. · doi:10.4153/CJM-1974-120-2
[7] Kelly, D. and Rival, I. (1975) Planar lattices, Can. J. Math. 27, 636-665. · Zbl 0312.06003 · doi:10.4153/CJM-1975-074-0
[8] Kelly, D. (1980) Modular lattices of dimension two, Algebra Universalis 11, 101-104. · Zbl 0448.06009 · doi:10.1007/BF02483085
[9] Markowsky, G. (1994) Permutation lattices revisited, Mathematical Social Sciences 27(1), 59-72. · Zbl 0881.06002 · doi:10.1016/0165-4896(94)00731-4
[10] Moniardet, B. Caractérisations et propriété de Sperner des treillis distributifs planaires finis, In Problèmes Combinatoires et Théorie des Graphes, Coll. Intern. CNRS 260, Editions du CNRS, Paris, 1976, pp. 297-300.
[11] Monjardet, B. (1990) The consequences of Dilworth’s work on lattices with unique irreducible decompositions, In K. P.Bogart, R.Freese and J.Kung (eds.), The Dilworth Theorems Selected Papers of Robert P. Dilworth, pp. 192-201, Birkhäuser, Boston.
[12] Rival, I. (1974) Lattices with doubly irreducible elements, Can. Math. Bull. 17, 91-95. · Zbl 0293.06003 · doi:10.4153/CMB-1974-016-3
[13] Stern, M. (1991) Semimodular Lattices, Teubner, Leipzig.
[14] Wille, R. (1974) On modular of order dimension two, Proc. Amer. Math. Soc. 43, 287-292. · Zbl 0288.06011 · doi:10.1090/S0002-9939-1974-0329988-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.