×

The \(hp\)-version of the boundary element method on polygons. (English) Zbl 0888.65121

The authors give a new proof for the exponential convergence of the \(hp\)-version of the boundary element method for the Symm’s integral equation with logarithmic kernel, and for the hypersingular integral equation resulting from taking the normal derivative of the double layer potential. The approach is based on the asymptotic expansions of the solutions in singularity functions near the vertices of the polygonal boundary. This allows to show that the solutions belong to countably normed spaces; hence the solutions can be approximated exponentially fast in the energy norm by using the \(hp\) Galerkin solutions. The results are applied to the transmission problem for acoustic scattering of time-harmonic waves, and to the two-dimensional crack problems in linear elasticity.
Reviewer: O.Titow (Berlin)

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65R20 Numerical methods for integral equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
76Q05 Hydro- and aero-acoustics
76M15 Boundary element methods applied to problems in fluid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
74R99 Fracture and damage
Full Text: DOI

References:

[1] I. Babuška, B.Q. Guo and E.P. Stephan, On the exponential convergence of the h-p version for boundary element Galerkin methods on polygons , Math. Methods Appl. Sci. 12 (1990), 413-427. · Zbl 0701.65074 · doi:10.1002/mma.1670120506
[2] M. Costabel, Boundary integral operators on Lipschitz domains : Elementary results , SIAM J. Math. Anal. 19 (1988), 613-626. · Zbl 0644.35037 · doi:10.1137/0519043
[3] M. Costabel and E.P. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations , in Mathematical models and methods in mechanics (W. Fiszdon and K. Wilmanski, eds.), Banach Centre Publ., Warsaw, 1985. · Zbl 0655.65129
[4] ——–, A direct boundary integral equation method for transmission problems , J. Math. Anal. Appl. 106 (1985), 367-413. · Zbl 0597.35021 · doi:10.1016/0022-247X(85)90118-0
[5] M. Costabel, E.P. Stephan and W.L. Wendland, On boundary integral equations of the first kind for the bi-Laplacian in a polygonal domain , Ann. Scuola Norm. Sup. Pisa, Cl. Ser (4) 10 (1983), 197-241. · Zbl 0563.45007
[6] V.J. Ervin, N. Heuer and E.P. Stephan, On the h-p version of the boundary element method for Symm’s integral equation on polygons , Comput. Methods Appl. Mech. Engrg. 110 (1993), 25-38. · Zbl 0842.65076 · doi:10.1016/0045-7825(93)90017-R
[7] B.Q. Guo and I. Babuška, The h-p version of the finite element method , Part 1: The basic approximation results , Comp. Mech. 1 (1986), 21-41. · Zbl 0634.73058 · doi:10.1007/BF00298636
[8] B.Q. Guo, N. Heuer and E.P. Stephan, The h-p version of the boundary element method for transmission problems with piecewise analytic data , SIAM J. Numer. Anal. 33 (2) (1996), 789-808. JSTOR: · Zbl 0854.65109 · doi:10.1137/0733040
[9] N. Heuer, M. Maischak and E.P. Stephan, The hp-version of the boundary element method for screen problems , Institut für Angewandte Mathematik, Hanover, Germany, 1995, · Zbl 0946.65120
[10] G.C. Hsiao, E.P. Stephan and W.L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to an arc , J. Comput. Appl. Math. 34 (1991), 1-19. · Zbl 0742.73026 · doi:10.1016/0377-0427(91)90143-8
[11] E.P. Stephan and M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes , Math. Modeling Numer. Anal. 25 (1991), 783-807. · Zbl 0744.65073
[12] E.P. Stephan and W.L. Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems , Manuscripta Geodaetica 1 (1976), 93-123. · Zbl 0353.65067
[13] W.L. Wendland and E.P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems , Arch. Rational Mech. Anal. 112 (1990), 363-390. · Zbl 0725.73091 · doi:10.1007/BF02384079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.