×

Location and layout planning. A survey. (English) Zbl 0885.90068

Summary: This paper gives a review on quantitative methods for microeconomic location planning which can be subdivided into facility location and layout planning. Depending on different objectives and restrictions, there is a large variety of problems, especially in the field of facility location planning. Basic models arising in discrete and continuous facility location planning (e.g., warehouse location, center, location routing, competitive location problems), as well as corresponding solution methods, are presented. Generalized models and recent developments in these fields are outlined. Within layout planning, the quadratic assignment problem and graph-theoretic concepts are considered.

MSC:

90B80 Discrete location and assignment
90B85 Continuous location
Full Text: DOI

References:

[1] Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Mgmt Sci 35:645–674 · Zbl 0669.90040 · doi:10.1287/mnsc.35.6.645
[2] Daskin M (1995) Network and discrete location: Models, algorithms, and applications. Wiley, New York et al. · Zbl 0870.90076
[3] Domschke W, Drexl A (1985) Location and layout planning: An international bibliography. Springer, Berlin et al. · Zbl 0582.90028
[4] Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien
[5] Drezner Z (ed) (1992) Locational decisions. Annals of OR 40, Baltzer, Basel
[6] Drezner Z (ed) (1995) Facility location: A survey of applications and methods. Springer, New York et al.
[7] Francis RL, McGinnis LF, White JA (1983) Locational analysis. Eur J Opl Res 12:220–252 · Zbl 0502.90019 · doi:10.1016/0377-2217(83)90194-7
[8] Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Engle-wood Cliffs
[9] Grabow B, Henckel D, Hollbach-Grömig B (1995): Weiche Standortfaktoren. Kohlhammer, Stuttgart et al.
[10] Greenhut ML (1995) Location Economics I. Elgar Publ. Lim., Aldershot Hants (U.K.)
[11] Handler GY, Mirchandani PB (1979) Location on networks. MIT Press, Cambridge, MA
[12] Isard W (1956) Location and space economy, a general theory relating to industrial location, market areas, land use, trade, and urban structure. MIT Press, Cambridge, MA
[13] Love RF, Morris JG, Wesolowski GO (1988) Facilities location – models & methods. North-Holland, New York et al.
[14] Meiler RD, Gau K-Y (1995) The facility layout problem: A review of recent and emerging research. Dept. of Industr. Engg., Auburn University, Auburn, AL 36849-5346
[15] Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New York et al.
[16] Thisse JF, Zoller HG (eds) (1983) Locational analysis of public facilities. North-Holland, Amsterdam
[17] Tompkins JA, White JA (1984) Facilities planning. Wiley, New York et al.
[18] Wäscher G (1982) Innerbetriebliche Standortplanung bei einfacher und mehrfacher Zielsetzung. Gabler, Wiesbaden
[19] Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes, Tübingen
[20] Beasley JE (1985) A note on solving large p-median problems. Eur J Opl Res 21:270–273 · Zbl 0569.90021 · doi:10.1016/0377-2217(85)90040-2
[21] Beasley JE (1988) An algorithm for solving large capacitated warehouse location problems. Eur J Opl Res 33:314–325 · Zbl 0637.90033 · doi:10.1016/0377-2217(88)90175-0
[22] Beasley JE (1990) OR-Library: Distributing test problems by electronic mail. J Opl Res Soc 44:1069–1072
[23] Benati S, Laporte G (1994) Tabu search algorithms for the (rp)-medianoid and (r)-centroid problems. Loc Sci 2:193–204 · Zbl 0917.90222
[24] Berman O, Einav D, Handler G (1991) The zone-constrained location problem on a network. Eur J Opl Res 53:14–24 · Zbl 0732.90048 · doi:10.1016/0377-2217(91)90089-E
[25] Berman O, Jaillet P, Simchi-Levi D (1995) Location-routing problems with uncertainty. In: Drezner Z (ed) Facility location: A survey of applications and methods. Springer, New York et al., Chapter 18
[26] Berman O, Simchi-Levi D (1988) Finding the optimal a priori tour and location of a traveling salesman with nonhomogeneous customers. Transp Sci 22:148–154 · Zbl 0653.90082 · doi:10.1287/trsc.22.2.148
[27] Bilde O, Krarup J (1977) Sharp lower bounds and efficient algorithms for the simple plant location problem. Annals of Discr Math 1:79–97 · Zbl 0364.90068 · doi:10.1016/S0167-5060(08)70728-3
[28] Christofides N, Beasley JE (1983) Extensions to a Lagrangean relaxation approach for the capacitated warehouse location problem. Eur J Opl Res 12:19–28 · Zbl 0499.90027 · doi:10.1016/0377-2217(83)90179-0
[29] Conn AR, Cornuejols G (1990) A projection method for the uncapacitated facility location problem. Math Progr 46:273–298 · Zbl 0705.90050 · doi:10.1007/BF01585746
[30] Cornuejols G, Sridharan R, Thizy JM (1991) A comparison of heuristics and relaxations for the capacitated plant location problem. Eur J Opl Res 50:280–297 · Zbl 0734.90046 · doi:10.1016/0377-2217(91)90261-S
[31] Crainic TG, Dejax P, Delorme L (1989) Models for multimode multicommodity location problems with interdepot balancing requirements. Annals of OR 18:279–302 · Zbl 0707.90064
[32] Crainic TG, Delorme L, Dejax P (1993) A branch-and-bound method for multicommodity location with balancing requirements. Eur J Opl Res 65:368–382 · Zbl 0779.90053 · doi:10.1016/0377-2217(93)90117-6
[33] Domschke W, Drexl A (1985) ADD heuristic’s starting procedures for capacitated plant location models. Eur J Opl Res 21:47–53 · Zbl 0582.90028 · doi:10.1016/0377-2217(85)90086-4
[34] Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien
[35] Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: A framework and bibliography. Transp Sci 27:44–54 · Zbl 0767.90006 · doi:10.1287/trsc.27.1.44
[36] Erlenkotter D (1978) A dual-based procedure for uncapacitated facility location. Ops Res 26:992–1009 · Zbl 0422.90053 · doi:10.1287/opre.26.6.992
[37] Francis RL, Lowe TJ (1992) On worst-case aggregation analysis for network location problems. Annals of OR 40:229–246 · Zbl 0787.90046 · doi:10.1007/BF02060479
[38] Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs
[39] Galvao RD (1993) The use of Lagrangean relaxation in the solution of uncapacitated facility location problems. Loc Sci 1:57–79 · Zbl 0923.90102
[40] Gao L-L, Robinson Jr. EP (1992) A dual-based optimization procedure for the two-echelon uncapacitated facility location problem. Naval Res Log 39:191–212 · Zbl 0773.90042 · doi:10.1002/1520-6750(199203)39:2<191::AID-NAV3220390205>3.0.CO;2-T
[41] Gao L-L, Robinson Jr EP (1994) Uncapacitated facility location: General solution procedure and computational experience. Eur J Opl Res 76:410–427 · Zbl 0810.90085 · doi:10.1016/0377-2217(94)90277-1
[42] Guignard M, Kim S, Spielberg K (1987) Multi-commodity nonlinear distribution planning. Methods of OR 58:191–202
[43] Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Ops Res 12:450–459 · Zbl 0123.00305 · doi:10.1287/opre.12.3.450
[44] Hakimi SL (1990) Locations with spatial interactions: Competitive locations and games. In: Mirchandani PB, Francis RL (eds), Chapter 9 · Zbl 0747.90057
[45] Halpern J, Maimon O (1982) Algorithms for the m-center problems: A survey. Eur J Opl Res 10:90–99 · Zbl 0481.90021 · doi:10.1016/0377-2217(82)90136-9
[46] Hammerschmid R (1990) Entwicklung technisch-wirtschaftlich optimierter regionaler Entsorgungsalternativen. Physica, Heidelberg
[47] Handler GY (1990) p-center problems. In: Mirchandani PB, Francis RL (eds), pp 305–347
[48] Hansen PH, Hegedahl B, Hjortkjaer S, Obel B (1994) A heuristic solution to the warehouse location-routing problem. Eur J Opl Res 76:111–127 · Zbl 0925.90245 · doi:10.1016/0377-2217(94)90010-8
[49] Holmberg K (1990) On the convergence of cross decomposition. Math Progr 47:269–296 · Zbl 0715.90078 · doi:10.1007/BF01580863
[50] Hotelling H (1929) Stability in competition. Econ J 39:41–57 · doi:10.2307/2224214
[51] Jacobsen SK (1983) Heuristics for the capacitated plant location model. Eur J Opl Res 12:253–261 · Zbl 0514.90018 · doi:10.1016/0377-2217(83)90195-9
[52] Jaeger M, Goldberg J (1994) A polynomial algorithm for the equal capacity p-center problem on trees. Transp Sci 28:167–175 · Zbl 0807.90076 · doi:10.1287/trsc.28.2.167
[53] Kariv O, Hakimi SL (1979a) An algorithmic approach to network location problems. I: The p-centers. SIAM J Appl Math 37:513–538 · Zbl 0432.90074 · doi:10.1137/0137040
[54] Kariv O, Hakimi SL (1979b) An algorithmic approach to network location problems. II: The p-medians. SIAM J Appl Math 37:539–560 · Zbl 0432.90075 · doi:10.1137/0137041
[55] Kincaid RK (1992) Good solutions to discrete noxious location problems via metaheuristics. Annals of OR 40:265–281 · Zbl 0782.90061 · doi:10.1007/BF02060482
[56] Klincewicz JG, Luss H (1987) A dual-based algorithm for multiproduct uncapacitated facility location. Transp Sci 21:198–206 · Zbl 0625.90024 · doi:10.1287/trsc.21.3.198
[57] Klose A (1993) Das kombinatorische p-Median-Modell und Erweiterungen zur Bestimmung optimaler Standorte. Thesis, Universität St. Gallen
[58] Körkel M (1989) On the exact solution of large-scale simple plant location problems. Eur J Opl Res 39:157–173 · Zbl 0673.90032 · doi:10.1016/0377-2217(89)90189-6
[59] Laporte G (1988) Location-routing. In: Golden BL, Assad AA (eds) Vehicle routing: Methods and studies. North-Holland, Amsterdam et al., pp 163–197
[60] Miller TC, Friesz TL, Tobin RL (1995) Equilibrium facility location on networks. Springer, Berlin et al.
[61] Minieka E (1970) The m-center problem. SIAM Rev 12:138–139 · Zbl 0193.24204 · doi:10.1137/1012016
[62] Minieka E (1981) A polynomial time algorithm for finding the absolute center of a network. Networks 11:351–355 · Zbl 0738.90045 · doi:10.1002/net.3230110404
[63] Mirchandani B (1990) The p-median problem and generalizations. In: Mirchandani PB, Francis RL (eds), pp 55–117 · Zbl 0731.90050
[64] Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New York et al.
[65] Moon S (1989) Application of generalized Benders decomposition to a nonlinear distribution system design problem. Naval Res Log 36:283–295 · Zbl 0675.90053 · doi:10.1002/1520-6750(198906)36:3<283::AID-NAV3220360306>3.0.CO;2-5
[66] Schildt B (1994) Strategische Produktions- und Distributionsplanung. Deutscher Universitäts-Verlag, Wiesbaden
[67] Serra D, ReVelle C (1995) Competitive location in discrete space. In: Drezner Z (ed) Facility location: A survey of applications and methods. Springer, New York et al., Chapter 16
[68] Sforza A (1990) An algorithm for finding the absolute center of a network. Eur J Opl Res 48:376–390 · Zbl 0738.90046 · doi:10.1016/0377-2217(90)90421-7
[69] Simchi-Levi D (1991) The capacitated traveling salesmen location problem. Transp Sci 25:9–18 · Zbl 0725.90050 · doi:10.1287/trsc.25.1.9
[70] Shulman A (1991) An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Ops Res 39:423–436 · Zbl 0742.90049 · doi:10.1287/opre.39.3.423
[71] Sridharan R (1995) The capacitated plant location problem. Eur J Opl Res 87:203–213 · Zbl 0914.90180 · doi:10.1016/0377-2217(95)00042-O
[72] Tansel BC, Francis RL, Lowe TJ (1983) Location on networks: A survey. Part II: Exploiting the tree network structure. Mgmt Sci 29:498–511 · Zbl 0513.90023 · doi:10.1287/mnsc.29.4.498
[73] Tcha D-W, Lee BI (1984) A branch-and-bound algorithm for the multi-level uncapacitated facility location problem. Eur J Opl Res 18:35–43 · Zbl 0542.90034 · doi:10.1016/0377-2217(84)90258-3
[74] Tüshaus U (1994) Approximating transportation costs in location problems: Some practical approaches. Working paper, University of St. Gallen
[75] van Roy TJ (1986) A cross decomposition algorithm for capacitated facility location. Ops Res 34:145–163 · Zbl 0594.90022 · doi:10.1287/opre.34.1.145
[76] Voß S (1996) A reverse elimination approach for the p-median problem. Studies in Locational Analysis 8:49–58 · Zbl 1176.90365
[77] Aneja YP, Parlar M (1994) Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Transp Sci 28:70–76 · Zbl 0799.90072 · doi:10.1287/trsc.28.1.70
[78] Appa GM, Giannikos I (1994) Is linear programming necessary for single facility location with maximin of rectilinear distance? J Opl Res Soc 45:97–107 · Zbl 0798.90093
[79] Aykin T (1995a) The hub location and routing problem. Eur J Opl Res 83:200–219 · Zbl 0903.90110 · doi:10.1016/0377-2217(93)E0173-U
[80] Aykin T (1995b) Networking policies for hub-and-spoke systems with application to the air transportation system. Transp Sci 29:201–221 · Zbl 0857.90028 · doi:10.1287/trsc.29.3.201
[81] Aykin T, Babu AJG (1987) Constrained large-region multifacility location problems. J Opl Res Soc 38:241–252 · Zbl 0614.90054
[82] Berens W, Körung F-J (1983) Das Schätzen von realen Entfernungen bei der Warenverteilungsplanung mit gebietspaarspezifischen Umwegfaktoren. OR Spektrum 5:67–75 · doi:10.1007/BF01720013
[83] Berman O, Jaillet P, Simchi-Levi D (1995) Location-routing problems with uncertainty. In: Drezner Z (ed) (1995a), Chapter 18
[84] Brimberg J, Dowling PD, Love RF (1994) The weighted one-two norm distance model: Empirical validation and confidence interval estimation. Loc Sci 2:91–100 · Zbl 0919.90033
[85] Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with lp distances. Ops Res 41:1153–1163 · Zbl 0795.90037 · doi:10.1287/opre.41.6.1153
[86] Brimberg J, Mehrez A (1994) Multi-facility location using a maximin criterion and rectangular distances. Loc Sci 2:11–19 · Zbl 0929.90045
[87] Chen R, Handler GY (1987) Relaxation method for the solution of the minimax location-allocation problem in Euclidean space. Naval Res Log 34:775–788 · Zbl 0648.90026 · doi:10.1002/1520-6750(198712)34:6<775::AID-NAV3220340603>3.0.CO;2-N
[88] Cooper L (1972) The transportation-location problem. Ops Res 20:94–108 · Zbl 0237.90036 · doi:10.1287/opre.20.1.94
[89] Dowling PD, Love RF (1990) Floor layouts using a multifacility location model. Naval Res Log 37:945–952 · Zbl 0711.90046 · doi:10.1002/1520-6750(199012)37:6<945::AID-NAV3220370613>3.0.CO;2-0
[90] Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien
[91] Drezner T (1995) Competitive facility location in the plane. In: Drezner Z (ed) (1995 a), Chapter 13 · Zbl 0917.90224
[92] Drezner Z (ed) (1995a) Facility location: A survey of applications and methods. Springer, New York et al.
[93] Drezner Z (1995b) Replacing discrete demand with continuous demand. In: Drezner Z (ed) (1995a), Chapter 2 · Zbl 0882.90083
[94] Eiselt HA, Laporte G (1989) Competitive spatial models. Eur J Opl Res 39:231–242 · Zbl 0661.90009 · doi:10.1016/0377-2217(89)90161-6
[95] Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: A framework and bibliography. Transp Sci 27:44–54 · Zbl 0767.90006 · doi:10.1287/trsc.27.1.44
[96] Foulds LR, Hamacher HW (1993) Optimal bin location and sequencing in printed circuit board assembly. Eur J Opl Res 66:279–290 · Zbl 0771.90060 · doi:10.1016/0377-2217(93)90217-B
[97] Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs
[98] Frenk JBC, Melo MT, Zhang S (1994) A Weiszfeld method for a generalized lp distance minisum location model in continuous space. Loc Sci 2:111–127 · Zbl 0926.90055
[99] Hamacher HW (1995) Mathematische Lösungsverfahren für planare Standortprobleme. Vieweg, Wiesbaden
[100] Hamacher HW, Nickel S (1995) Restricted planar location problems and applications. Naval Res Log 42:967–992 · Zbl 0845.90082 · doi:10.1002/1520-6750(199509)42:6<967::AID-NAV3220420608>3.0.CO;2-X
[101] Liu CM, Kao RL, Wang AH (1994) Solving location-allocation problems with rectilinear distance by simulated annealing. J Opl Res Soc 45:1304–1315 · Zbl 0812.90095
[102] Love RF, Juel H (1982) Properties and solution methods for large location-allocation problems. J Opl Res Soc 33:443–452 · Zbl 0478.90017
[103] Love RF, Morris JG (1972) Modelling inter-city road distance by mathematical functions. OR Quart 23:61–71 · Zbl 0231.90059
[104] Love RF, Morris JG, Wesolowski GO (1988) Facilities location – models & methods. North-Holland, New York et al.
[105] Love RF, Walker JH (1994) An empirical comparison of block and round norms for modelling actual distances. Loc Sci 2:21–43 · Zbl 0926.90056
[106] Miehle W (1958) Link-length minimization in networks. Ops Res 6:232–243 · doi:10.1287/opre.6.2.232
[107] Morris JG (1981) Convergence of the Weiszfeld algorithm for the Weber problem using generalized ”distance” functions. Ops Res 29:37–48 · Zbl 0452.90023 · doi:10.1287/opre.29.1.37
[108] O’Kelly ME (1992) A clustering approach to the planar hub location problem. Annals of OR 40:339–353 · Zbl 0782.90063 · doi:10.1007/BF02060486
[109] Plastria F (1995) Continuous location problems. In: Drezner Z (ed) (1995a), Chapter 11 · Zbl 1013.90089
[110] Rosen JB, Xue GL (1993) On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem. Ops Res 41:1164–1171 · Zbl 0802.90067 · doi:10.1287/opre.41.6.1164
[111] Sherali HD, Tuncbilek CH (1992) A squared-Euclidean distance location-allocation problem. Naval Res Log 39:447–469 · Zbl 0763.90061 · doi:10.1002/1520-6750(199206)39:4<447::AID-NAV3220390403>3.0.CO;2-O
[112] Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes, Tübingen
[113] Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math J 43:355–386 · Zbl 0017.18007
[114] Armour GC, Buffa ES (1963) A heuristic algorithm and simulation approach to relative location of facilities. Mgmt Sci 9:294–309 · doi:10.1287/mnsc.9.2.294
[115] Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J on Computing 6:126–140 · Zbl 0807.90094
[116] Böite A (1994) Modelle und Verfahren zur innerbetrieblichen Standortplanung. Physica, Heidelberg
[117] Boswell SG (1992) TESSA – A new greedy heuristic for the facility layout planning. Int J Prod Res 30:1957–1968 · Zbl 0775.90147 · doi:10.1080/00207549208948132
[118] Bozer YA, Meiler RD, Erlebacher SJ (1994) An improvement-type layout algorithm for single and multiple-floor facilities. Mgmt Sci 40:918–932 · Zbl 0813.90076 · doi:10.1287/mnsc.40.7.918
[119] Brandt H-P (1989) Rechnergestützte Layoutplanung von Industriebetrieben. TÜV Rheinland, Köln
[120] Buffa ES, Armour GC, Vollmann TE (1964) Allocating facilities with CRAFT. Harvard Business Rev 42:136–156
[121] Burkard RE (1990) Locations with spatial interactions: The quadratic assignment problem. In: Mirchandani RB, Francis RL (eds) Discrete location theory. Wiley, New York et al., pp 387–437
[122] Burkard RE, Karisch S, Rendl F (1991) QAPLIB – a quadratic assignment problem library. Eur J Opl Res 55:115–119 · Zbl 0729.90993 · doi:10.1016/0377-2217(91)90197-4
[123] Burkard RE, Rendl F (1984) A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur J Opl Res 17:169–174 · Zbl 0541.90070 · doi:10.1016/0377-2217(84)90231-5
[124] Connolly DT (1990) An improved annealing scheme for the QAP. Eur J Opl Res 46:93–100 · Zbl 0715.90079 · doi:10.1016/0377-2217(90)90301-Q
[125] Deshpande SD, Krishnamoorthy S, Deshpande VB (1988) Computer-aided site layout for construction projects – A graph theoretic approach. OMEGA 16:612–615 · doi:10.1016/0305-0483(88)90036-9
[126] Domschke W, Drexl A (1985) Location and layout planning: An international bibliography. Springer, Berlin et al. · Zbl 0582.90028
[127] Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien
[128] Eades P, Foulds LR, Giffin JW (1982) An efficient heuristic for identifying a maximum weight planar subgraph. In: Billington EJ et al. (eds) Combinatorial Mathematics IX. Lecture Notes in Mathematics, Vol. 952, Springer, Berlin et al., pp 239–251 · Zbl 0512.05036
[129] Fleurent C, Ferland JA (1994) Genetic hybrids for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS Series in Discr. Math, and Theoret. Comp. Sci., American Math. Society, Providence, pp 173–187 · Zbl 0817.90056
[130] Foulds LR, Gibbons PB, Giffin JW (1985) Facilities layout adjacency determination: An experimental comparison of three graph theoretic heuristics. Ops Res 33:1091–1106 · Zbl 0574.90022 · doi:10.1287/opre.33.5.1091
[131] Foulds LR, Robinson DF (1978) Graph theoretic heuristics for the plant layout problem. Int J Prod Res 16:27–37 · doi:10.1080/00207547808929997
[132] Foulds LR, Robinson DF (1979) Construction properties of combinatorial deltahedra. Discr Appl Math 1:75–87 · Zbl 0415.05025 · doi:10.1016/0166-218X(79)90015-5
[133] Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs
[134] Giffin JW (1984) Graph theoretic techniques for facilities layout. Ph.D. Thesis, University of Canterbury, New Zealand
[135] Giffin JW, Foulds LR (1987) Facilities layout generalized model solved by n-boundary shortest path heuristics. Eur J Opl Res 28:382–391 · Zbl 0614.90029 · doi:10.1016/S0377-2217(87)80181-9
[136] Gilmore PC (1962) Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM J 10:305–313 · Zbl 0118.15101
[137] Glover F, Pesch E (1993) Efficient facility layout planning. Working Paper, University of Colorado, Boulder
[138] Goetschalckx M (1992) An interactive layout heuristic based on hexagonal adjacency graphs. Eur J Opl Res 63:304–321 · Zbl 0825.90473 · doi:10.1016/0377-2217(92)90033-6
[139] Gomory RE, Hu TC (1961) Multi-terminal network flows. SIAM J 9:551–570 · Zbl 0112.12405
[140] Green RH, Al-Hakim L (1985) A heuristic for facilities layout planning. OMEGA 13:469–474 · doi:10.1016/0305-0483(85)90074-X
[141] Hadley SW, Rendl F, Wolkowicz H (1992) A new lower bound via projection for the quadratic assignment problem. Math of OR 17:727–739 · Zbl 0767.90059 · doi:10.1287/moor.17.3.727
[142] Hasan M, Osman IH (1995) Local search algorithms for the maximal planar layout problem. Int Transact of Opl Res 2:89–106 · Zbl 0868.90072 · doi:10.1111/j.1475-3995.1995.tb00007.x
[143] Hassan MMD, Hogg GL (1991) On constructing a block layout by graph theory. Int J Prod Res 29:1263–1278 · doi:10.1080/00207549108930132
[144] Heragu S (1992) Recent models and techniques for solving the layout problem. Eur J Opl Res 57:136–144 · Zbl 0825.90451 · doi:10.1016/0377-2217(92)90038-B
[145] Heragu SS (1997) Design, location, and layout of facilities. PWS Publ. Company, Boston, MA (forthcoming)
[146] Heragu S, Kusiak A (1988) Machine layout problem in flexible manufacturing systems. Ops Res 36:258–268 · doi:10.1287/opre.36.2.258
[147] Heragu S, Alfa A (1992) Experimental analysis of simulated annealing based algorithms for the layout problem. Eur J Opl Res 57:190–202 · Zbl 0825.90454 · doi:10.1016/0377-2217(92)90042-8
[148] Hu TC (1969) Integer programming and network flows. Addison-Wesley, Menlo Park et al. · Zbl 0197.45701
[149] Huntley CL, Brown DE (1991) A parallel heuristic for quadratic assignment problems. Comp & Ops Res 18:275–289 · Zbl 0723.90044 · doi:10.1016/0305-0548(91)90029-Q
[150] Jajodia S, Minis I, Harhalakis G, Proth J (1992) CLASS: Computerized layout solutions using simulated annealing. Int J Prod Res 30:95–108 · Zbl 0825.90487 · doi:10.1080/00207549208942880
[151] Jünger M, Mutzel P (1993) Solving the maximum weight planar subgraph problem by branch and cut. In: Rinaldi G, Wolsey L (eds) Proceedings of the third conference on integer programming and combinatorial optimization (IPCO), pp 479–492 · Zbl 0945.68526
[152] Kelly JP, Laguna M, Glover F (1994) A study of diversification strategies for the quadratic assignment problem. Comp & Ops Res 21:885–893 · Zbl 0814.90060 · doi:10.1016/0305-0548(94)90018-3
[153] Kim J-Y, Kim Y-D (1995) Graph theoretic heuristics for unequalsized facility layout problems. OMEGA 23:391–401 · doi:10.1016/0305-0483(95)00016-H
[154] Koopmans TC, Beckmann MJ (1957) Assignment problems and the location of economic activities. Econometrica 25:53–76 · Zbl 0098.12203 · doi:10.2307/1907742
[155] Kusiak A, Heragu SS (1987) The facility layout problem. Eur J Opl Res 29:229–251 · Zbl 0612.90035 · doi:10.1016/0377-2217(87)90238-4
[156] Laursen PS (1993a) Simple approaches to parallel branch and bound. Parallel Computing 19:143–152 · Zbl 0809.65060 · doi:10.1016/0167-8191(93)90044-L
[157] Laursen PS (1993b) Simulated annealing for the QAP – Optimal tradeoff between simulation time and solution quality. Eur J Opl Res 69:238–243 · doi:10.1016/0377-2217(93)90167-L
[158] Lee RC, Moore JM (1967) CORELAP – Computerized Relationship Layout Planning. J Ind Engg 18:195–200
[159] Leung J (1992) A new-graph theoretic heuristic for facility layout. Mgmt Sci 38:594–605 · Zbl 0773.90034 · doi:10.1287/mnsc.38.4.594
[160] Maniezzo V, Dorigo M, Colorni A (1995) Algodesk: An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem. Eur J Opl Res 81:188–204 · Zbl 0912.90240 · doi:10.1016/0377-2217(93)E0128-K
[161] Mans B, Mautor T, Roucairol C (1995) A parallel depth first search branch and bound algorithm for the quadratic assignment problem. Eur J Opl Res 81:617–628 · Zbl 0906.90147 · doi:10.1016/0377-2217(93)E0334-T
[162] Meller RD, Bozer YA (1996) A new simulated annealing algorithm for the facility layout problem. Int J Prod Res 34:1675–1692 · Zbl 0927.90037 · doi:10.1080/00207549608904990
[163] Meller RD, Gau K-Y (1995) The facility layout problem: A review of recent and emerging research. Dept. of Industr. Engg., Auburn University, Auburn, AL 36849-5346
[164] Merker J, Wäscher G (1997) Two new heuristic algorithms for the maximal planar layout problem. OR Spektrum 19:131–137 · Zbl 0889.90147 · doi:10.1007/BF01545513
[165] Montreuil B, Ratliff HD (1989) Utilizing cut trees as design skeletons for facility layout. IIE Transact 21:136–143 · doi:10.1080/07408178908966217
[166] Montreuil B, Ratliff HD, Goetschalckx M (1987) Matching based interactive facility layout. IIE Transact 19:271–279 · doi:10.1080/07408178708975396
[167] Montreuil B, Venkatradri U, Ratliff HD (1993) Generating a layout from a design skeleton. IIE Transact 25:3–15 · doi:10.1080/07408179308964261
[168] Nissen V (1994) Evolution��re Algorithmen. Deutscher Universitäts-Verlag, Wiesbaden
[169] Pardalos PM, Rendl F, Wolkowicz H (1994) The quadratic assignment problem: A survey and recent developments. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS Series in Discr. Math. and Theoret. Comp. Sci., American Math. Society, Providence, pp 1–42 · Zbl 0817.90059
[170] Paulli J (1993) A computational comparison of simulated annealing and tabu search applied to the quadratic assignment problem. In: Vidal RVV (ed) Applied simulated annealing. Springer, Berlin et al., pp 85–102
[171] Pesch E, Voß S (eds) (1995) Applied local search. Special issue 2/3 of OR Spektrum, Vol. 17 · Zbl 0842.90098
[172] Reeves CR (ed) (1993) Modern heuristic techniques for combinatorial problems. Blackwell, Oxford · Zbl 0942.90500
[173] Rinsma F, Giffin JW, Robinson DF (1990) Orthogonal floorplans from maximal planar graphs. Environment and Planning B: Planning and Design 17:57–71 · doi:10.1068/b170057
[174] Seppänen JJ, Moore JM (1975) String processing algorithms for plant layout problems. Int J Prod Res 13:239–254 · doi:10.1080/00207547508942994
[175] Skorin-Kapov J (1990) Tabu search applied to the quadratic assignment problem. ORSA J on Computing 2:33–45 · Zbl 0752.90054
[176] Skorin-Kapov J (1994) Extension of a tabu search adaptation to the quadratic assignment problem. Comp & Ops Res 21:855–865 · Zbl 0812.90098 · doi:10.1016/0305-0548(94)90015-9
[177] Sly D (1995) Computerized facilities design and management: An overview. IIE Solutions 27(8):43–51
[178] Sly DP, Grajo E, Montreuil B (1996) Factory layout and planning software: Part 3. IIE Solutions 28(7):18–25
[179] Taillard ED (1991) Robust taboo search for the quadratic assignment problem. Parallel Computing 17:443–455 · doi:10.1016/S0167-8191(05)80147-4
[180] Taillard ED (1995) Comparison of iterative searches for the quadratic assignment problem. Loc Sci 3:87–105 · Zbl 0916.90235 · doi:10.1016/0966-8349(95)00008-6
[181] Tam KY (1992a) Genetic algorithms, function optimization, and facility layout design. Eur J Opl Res 63:322–346 · Zbl 0825.90474 · doi:10.1016/0377-2217(92)90034-7
[182] Tam KY (1992b) A simulated annealing algorithm for allocating space to manufacturing cells. Int J Prod Res 30:63–87 · Zbl 0825.90485 · doi:10.1080/00207549208942878
[183] Tate DM, Smith AE (1995a) A genetic approach to the quadratic assignment problem. Comp & Ops Res 22:73–83 · Zbl 0812.90099 · doi:10.1016/0305-0548(93)E0020-T
[184] Tate DM, Smith AE (1995b) Unequal-area facility layout by genetic search. IIE Transactions 27:465–472 · doi:10.1080/07408179508936763
[185] Voß S (1994) Intelligent search. Thesis, Technische Hochschule Darmstadt (forthcoming in Springer)
[186] Voß S (1995) Solving quadratic assignment problems using the reverse elimination method. In: Nash SG, Sofer S (eds) The impact of emerging technologies on Computer Science and Operations Research. Kluwer, Dordrecht, pp 281–296 · Zbl 0827.90111
[187] Wäscher G (1982) Innerbetriebliche Standortplanung bei einfacher und mehrfacher Zielsetzung. Gabler, Wiesbaden
[188] Wäscher G, Chamoni P (1987) MICROLAY: An interactive computer program for factory layout planning on microcomputers. Eur J Opl Res 31:185–193 · Zbl 0615.90038 · doi:10.1016/0377-2217(87)90021-X
[189] Wäscher G, Merker J (1997) A comparative evaluation of heuristics for the adjacency problem in facility layout planning. Int J Prod Res 35:447–466 · Zbl 0943.90525 · doi:10.1080/002075497195849
[190] Welgama PS, Gibson PR (1996) An integrated methodology for automating the determination of layout and materials handling system. Int J Prod Res 34:2247–2264 · Zbl 0930.90036 · doi:10.1080/00207549608905023
[191] Welgama PS, Gibson PR, Al-Hakim LAR (1994) Facilities layout: A knowledge-based approach for converting a dual graph into a block layout. Int J Prod Econ 33:17–30 · doi:10.1016/0925-5273(94)90115-5
[192] White DJ (1994) Strengthening Gilmore’s bound for the quadratic assignment problem. Eur J Opl Res 77:126–140 · Zbl 0810.90095 · doi:10.1016/0377-2217(94)90033-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.