×

On singly-periodic minimal surfaces with planar ends. (English) Zbl 0882.53007

A large class inside the collection of properly embedded minimal surfaces in 3-dimensional Euclidean space \(\mathbb{R}^3\) is the one consisting of those surfaces which are invariant by an infinite cyclic group of direct rigid motions \(G\) acting freely on \(\mathbb{R}^3\), called single-periodic minimal surfaces. Such a surface can be viewed inside the flat three-manifold \(\mathbb{R}^3/G\). In [Indiana Univ. Math. J. 45, 177-204 (1996; Zbl 0864.53008)] J. Pérez and A. Ros introduced a nondegeneracy notion for a properly embedded minimal surface with finite total curvature in \(\mathbb{R}^3\) in terms of the space of Jacobi functions on the surface which have logarithmic growth at the ends, and proved that the set of nondegenerate minimal surfaces with fixed topology is a finite-dimensional real-analytic manifold.
In this paper, the spaces of nondegenerate properly embedded minimal surfaces in quotients of \(\mathbb{R}^3\) by nontrivial translations or by screw motions with nontrivial rotational part, fixed finite topology and planar type ends, are endowed with natural structures of finite-dimensional real-analytic manifolds. Riemann’s minimal examples are characterized as the only nondegenerate surfaces with genus one in their corresponding spaces. The author also gives natural immersions of those spaces into certain complex Euclidean spaces which turn out to be Lagrangian immersions with respect to the standard symplectic structures.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Citations:

Zbl 0864.53008
Full Text: DOI

References:

[1] R. Böhme and A. J. Tromba, The index theorem for classical minimal surfaces, Ann. of Math. (2) 113 (1981), no. 3, 447 – 499. · Zbl 0482.58010 · doi:10.2307/2006993
[2] Michael Callahan, David Hoffman, and Hermann Karcher, A family of singly periodic minimal surfaces invariant under a screw motion, Experiment. Math. 2 (1993), no. 3, 157 – 182. · Zbl 0807.53004
[3] Michael Callahan, David Hoffman, and William H. Meeks III, Embedded minimal surfaces with an infinite number of ends, Invent. Math. 96 (1989), no. 3, 459 – 505. · Zbl 0676.53004 · doi:10.1007/BF01393694
[4] Michael Callahan, David Hoffman, and William H. Meeks III, The structure of singly-periodic minimal surfaces, Invent. Math. 99 (1990), no. 3, 455 – 481. · Zbl 0695.53005 · doi:10.1007/BF01234428
[5] J. Dieudonné, Éléments d’analyse. Tome III: Chapitres XVI et XVII, Cahiers Scientifiques, Fasc. XXXIII, Gauthier-Villars Éditeur, Paris, 1970 (French). · Zbl 0208.31802
[6] Y. Fang & F. Wei, On uniqueness of Riemann’s examples, Preprint. · Zbl 0898.53006
[7] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[8] D. Hoffman & H. Karcher, Complete embedded minimal surfaces of finite total curvature, preprint. · Zbl 0890.53001
[9] David Hoffman and William H. Meeks III, Minimal surfaces based on the catenoid, Amer. Math. Monthly 97 (1990), no. 8, 702 – 730. · Zbl 0737.53006 · doi:10.2307/2324576
[10] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373 – 377. · Zbl 0722.53054 · doi:10.1007/BF01231506
[11] H. Karcher, Embedded minimal surfaces derived from Scherk’s examples, Manuscripta Math. 62 (1988), no. 1, 83 – 114. · Zbl 0658.53006 · doi:10.1007/BF01258269
[12] R. Kusner, Global geometry of extremal surfaces in three-space, PhD Thesis, University of California, Berkeley (1988).
[13] Rémi Langevin and Harold Rosenberg, A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988), no. 3, 819 – 828. · Zbl 0667.49024 · doi:10.1215/S0012-7094-88-05736-5
[14] F. J. López, M. Ritoré & F. Wei, A characterization of Riemann’s minimal surfaces, to appear in J. Differential Geometry. · Zbl 0938.53004
[15] William H. Meeks III and Harold Rosenberg, The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), no. 4, 538 – 578. · Zbl 0807.53049 · doi:10.1007/BF02565835
[16] Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147 – 174. · Zbl 0744.58007 · doi:10.1007/BFb0083639
[17] R. Osserman, A survey of minimal surfaces, vol. 1, Cambridge Univ. Press, New York (1989). · Zbl 0209.52901
[18] J. Pérez. Riemann bilinear relations on minimal surfaces, preprint. · Zbl 0892.53005
[19] Joaquín Pérez and Antonio Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513 – 525. · Zbl 0789.53004 · doi:10.1007/BF01444900
[20] J. Pérez & A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J. 45 (1996) 177-204. CMP 1996:17
[21] B. Riemann, Gesammelte mathematische Werke, 2nd edition, B.G. Teubner, Leipzig (1892).
[22] M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. of Math. 63 (1956) 77-90. · Zbl 0070.16803
[23] Friedrich Tomi and Anthony J. Tromba, Extreme curves bound embedded minimal surfaces of the type of the disc, Math. Z. 158 (1978), no. 2, 137 – 145. · Zbl 0353.53032 · doi:10.1007/BF01320863
[24] A. J. Tromba, Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve in \?\(^{n}\). I. \?\ge 4, Trans. Amer. Math. Soc. 290 (1985), no. 1, 385 – 413. · Zbl 0604.58008
[25] Brian White, The space of \?-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J. 36 (1987), no. 3, 567 – 602. · Zbl 0770.58005 · doi:10.1512/iumj.1987.36.36031
[26] Brian White, The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J. 40 (1991), no. 1, 161 – 200. · Zbl 0742.58009 · doi:10.1512/iumj.1991.40.40008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.