×

The variance constant for the actual waiting time of the PH/PH/1 queue. (English) Zbl 0881.60079

Let \(w_n\) denote the actual waiting time in the PH/PH/1 queue. Using Poisson’s equation the functional \({1\over n} \sum^{n-1}_{k=0} f(w_k)\) converges to the normal random variable in distribution. The variance of the limiting random variable has been refered to as (time average) variance constant. The author derives explicit solutions to Poisson’s equation using phase-type methodology. Some numerical examples are also presented for some particular cases.

MSC:

60K25 Queueing theory (aspects of probability theory)
60K05 Renewal theory
60G42 Martingales with discrete parameter
Full Text: DOI

References:

[1] Asmussen, S. (1987). Applied Probability and Queues. Wiley, New York. · Zbl 0624.60098
[2] Asmussen, S. (1992). Phase-ty pe representations in random walk and queueing problems. Ann. Probab. 20 772-789. · Zbl 0755.60049 · doi:10.1214/aop/1176989805
[3] Asmussen, S., Nerman, O. and Olson, M. (1994). Fitting phase-ty pe distributions via the EM-algorithm. Preprint, Dept. Math., Chalmers Univ. Technology, Gothenburg, Sweden.
[4] Asmussen, S. and Rolski, T. (1991). Computational methods in risk theory: a matrixalgorithmic approach. Insurance Math. Econom. 10 259-274. · Zbl 0748.62058 · doi:10.1016/0167-6687(92)90058-J
[5] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[6] Bladt, M. and Asmussen, S. (1996). Renewal theory and queueing algorithms for matrix-exponential distributions. In Matrix-Analy tic Methods in Stochastic Models (S. Chakravarthy and A. S. Alta, eds.) 313-341. Dekker, New York. · Zbl 0872.60064
[7] Bladt, M. and Asmussen, S. (1994). Poisson’s equation for queues driven by a Markovian point process. QUESTA 17 235-274. · Zbl 0809.60093 · doi:10.1007/BF01158696
[8] Gly nn, P. W. (1989). Poisson’s equation for the recurrent M/G/1 queue. Adv. in Appl. Probab. 26 1044-1062. · Zbl 0820.60073 · doi:10.2307/1427904
[9] Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Series, London. · Zbl 0497.26005
[10] Häggstr öm, O., Asmussen, S. and Nerman, O. (1992). EMPHT-a program for fitting phasety pe distributions. Preprint, Dept. Math., Chalmers Univ. Technology, Gothenburg, Sweden.
[11] Neuts, M. F. (1978). Renewal processes of phase ty pe. Naval Res. Logist. Quart. 25 445-454. · Zbl 0393.90096 · doi:10.1002/nav.3800250307
[12] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins Univ. Press. · Zbl 0469.60002
[13] Neveu, J. (1972). Potentiel Markovien récurrent des cha ines de Harris. Ann. Inst. Fourier (Grenoble) 22 85-130. · Zbl 0226.60084 · doi:10.5802/aif.414
[14] Nummelin, E. (1985). On the Poisson equation in the potential theory of a single kernel. Technical report, Univ. Helsinki. · Zbl 0597.47021
[15] Revuz, D. (1984). Markov Chains. North-Holland, New York. · Zbl 0539.60073
[16] Whitt, W. (1989). Planning queueing simulations. Management Sci. 35 1341-1366. JSTOR: · Zbl 0683.60075 · doi:10.1287/mnsc.35.11.1341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.