×

Randomized graph products, chromatic numbers, and the Lovász \(\vartheta\)-function. (English) Zbl 0880.05032

Let \(G\) be a graph on \(n\) vertices. Denote by \(\alpha (G)\) the size of the largest independent set in \(G\), by \(\theta (G)\) the Lovász \(\theta\)-function on \(G\), and by \(\overline\chi (G)\) the chromatic number of the complement of \(G\). The main result of this paper says that for some constant \(c>0\) there exist an infinite family of graphs for which \(\theta (G)<2^{\sqrt{\log n}} \)and \(\overline\chi (G)>n/2^{c\sqrt{\log n}}\). Likewise, for some constant \(c>0\) there exist an infinite family of graphs for which \(\alpha (G)<2^{\sqrt{\log n}}\) and \(\theta (G)>n/2^{c\sqrt{\log n}}\). This disproves two conjectures showed to be equivalent by Szegedy and a conjecture attributed to Lovász. The (randomized) construction of graphs satisfying the above requirements is based on the “randomized graph products” technique of Berman and Schnitger. Several classical nonapproximability results are shown to be nice consequences of the construction given in this paper. An open question leading to the construction of Ramsey graphs is posed.

MSC:

05C15 Coloring of graphs and hypergraphs
90C35 Programming involving graphs or networks
Full Text: DOI

References:

[1] N. Alon, N. Kahale: Approximating the independence number via the ?-function.Manuscript, November 1994. · Zbl 0895.90169
[2] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy: Proof verification and hardness of approximation problems.Proc. of 33rd IEEE Symp. on Foundations of Computer Science, 1992, 14-23. · Zbl 0977.68539
[3] S. Arora, S. Safra: Probabilistic checking of proofs: a new characterization of NP.Proc. of 33rd IEEE Symp. on Foundations of Computer Science, 1992, 2-13. · Zbl 0945.68516
[4] M. Bellare, O. Goldreich, M. Sudan: Free bits, PCPs and nonapproximability-towards tight results.Proc. of 36th IEEE Symp. on Foundations of Computer Science, 1995, 422-431. · Zbl 0938.68820
[5] P. Berman, G. Schnitger: On the complexity of approximating the independent set problem,Information and Computation 96 (1992), 77-94. · Zbl 0804.90121 · doi:10.1016/0890-5401(92)90056-L
[6] A. Blum: Algorithms for approximate graph coloring, Phd dissertation, MIT, 1991.
[7] A. Blum: New approximation algorithms for graph coloring.Journal of the ACM,41 (1994), 470-516. · Zbl 0821.68092 · doi:10.1145/176584.176586
[8] R. Boppana, M. Haldorsson: Approximating maximum independent sets by excluding subgraphs,Proc. of 2nd SWAT, Springer, LNCS 447 (1990), 13-25.
[9] U. Feige, S. Goldwasser, L. Lov?sz, S. Safra, M. Szegedy: Interactive proofs and the hardness of approximating cliques,Journal of the ACM,43(2) (1996), 268-292. · Zbl 0882.68129 · doi:10.1145/226643.226652
[10] U. Feige, J. Kilian: Zero knowledge and the chromatic number,Proc. of Eleventh Annual IEEE Conference on Computational Complexity, 1996, 278-287.
[11] P. Frankl, R. Wilson: Intersection theorems with geometric consequences,Combinatorica 1 (1981), 357-368. · Zbl 0498.05048 · doi:10.1007/BF02579457
[12] M. Furer: Improved hardness results for approximating the chromatic number,Proc. of 36th IEEE Symp. on Foundations of Computer Science, (1995), 414-421. · Zbl 0938.68923
[13] M. Goemans, D. Williamson: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,Journal of the ACM,42(6) (1995), 1115-1145. · Zbl 0885.68088 · doi:10.1145/227683.227684
[14] M. Grotschel, L. Lov?sz, A. Schrijver:Geometric algorithms and combinatorial optimization, Springer-Verlag, Berlin, 1987.
[15] J. Hastad: Clique is hard to approximate withinn 1??,Proc. of 37th IEEE Symposium of Foundations of Computer Science, 1996, 627-636.
[16] W. Hoeffding: Probability inequalities for sums of bounded random variables,Journal of the American Statistical Association,58 (1963), 13-30. · Zbl 0127.10602 · doi:10.2307/2282952
[17] D. Karger, R. Motwani, M. Sudan: Approximate Graph Coloring by Semidefinite Programming,Proc. of 35th IEEE Symp. on Foundations of Computer Science, (1994), 2-13. · Zbl 0904.68116
[18] D. Knuth: The sandwich theorem,Electronic J. Comp.,1 (1994), 1-48. · Zbl 0810.05065
[19] N. Linial, U. Vazirani: Graph products and chromatic numbers,Proc. of 30th IEEE Symp. on Foundations of Computer Science, (1989), 124-128.
[20] L. Lov?sz: On the ratio of the optimal integral and fractional covers,Discrete Mathematics,13 (1975), 383-390. · Zbl 0323.05127 · doi:10.1016/0012-365X(75)90058-8
[21] L. Lov?sz: On the Shannon Capacity of a Graph,IEEE Trans. on Information Theory, Vol. IT-25, No. 1, 1979, 1-7. · Zbl 0395.94021 · doi:10.1109/TIT.1979.1055985
[22] C. Lund, M. Yannakakis: On the hardness of approximating minimization problems,Journal of the ACM,41(5) (1994), 960-981. · Zbl 0814.68064 · doi:10.1145/185675.306789
[23] J. Moon, L. Moser: On cliques in graphsIsrael J. Math.,3 (1965), 23-28. · Zbl 0144.23205 · doi:10.1007/BF02760024
[24] M. Szegedy: A note on the ? number of Lov?sz and the generalized Delsarte bound,Proc. of 35th IEEE Symp. on Foundations of Computer Science, (1994), 36-39.
[25] A. Wigderson: Improving the performance guarantee for approximate graph coloring,Journal of the ACM,30(4) (1983), 729-735. · Zbl 0627.68057 · doi:10.1145/2157.2158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.