×

On a generalized sup-inf problem. (English) Zbl 0879.49015

For given nonempty sets \(A\), \(B\) and the function \(\varphi: A\times B\to\mathbb{R}\), consider the problem of finding \(u\in A\) such that \[ \varphi(u,v)\geq 0\quad\text{for every }v\in B.\tag \] It is shown that the problem (1) generalizes the minimum problem, saddle point, variational inequality, and the equilibrium problems. The authors have proved that main results can be obtained as simple applications of the well-known separation theorems of convex sets in finite-dimensional spaces. This paper contains some new interesting and novel results.
Reviewer: M.A.Noor (Riyadh)

MSC:

49J40 Variational inequalities
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Fan, K.,Existence Theorems and Extreme Solutions for Inequalities Concerning Convex Functions or Linear Transformations, Mathematische Zeitschrift, Vol. 68, pp. 205–216, 1957. · Zbl 0078.10204 · doi:10.1007/BF01160340
[2] Pshenichnyi, V. N.,Necessary Conditions for an Extremum, Nauka, Moscow, Russia, 1969 (in Russian). · Zbl 0764.90079
[3] Kirszbraun, M. D.,Über die zusammenziehenden und Lipschitzschen Transformationen, Fundamenta Mathematicae, Vol. 22, pp. 7–10, 1934. · Zbl 0009.03904
[4] Fan, K.,Minimax Theorems, Proceedings of the National Academy of Sciences of the USA, Vol. 39, pp. 42–47, 1953. · Zbl 0050.06501 · doi:10.1073/pnas.39.1.42
[5] König, H.,Über das von Neumannsche Minimax Theorem, Archives of Mathematics, Vol. 19, pp. 482–487, 1968. · Zbl 0179.21001 · doi:10.1007/BF01898769
[6] Simons, S.,Minimax and Variational Inequalities: Are They of Fixed-Point or Hahn-Banach Type? Game Theory and Mathematical Economics, Edited by O. Moeschlin and D. Pallaschke, North-Holland, Amsterdam, Netherlands, pp. 379–388, 1981.
[7] Sebestyén, Z.,An Elementary Minimax Theorem, Acta Scientiarum Mathematicarum, Szeged, Hungary, Vol. 47, pp. 457–459, 1984. · Zbl 0559.49008
[8] Gwinner, J., andOettli, W.,Theorems of the Alternative and Duality for Inf-Sup Problems, Mathematics of Operations Research, Vol. 19, pp. 238–256, 1994. · Zbl 0807.90126 · doi:10.1287/moor.19.1.238
[9] Simons, S.,Variational Inequalities via the Hahn-Banach Theorem, Archives of Mathematics, Vol. 31, pp. 482–490, 1978. · doi:10.1007/BF01226478
[10] Rodé, G., andSimons, S.,Variational Inequalities for Functions on Convex Sets, Journal of Mathematical Analysis and Applications, Vol. 95, pp. 449–456, 1983. · Zbl 0536.49004 · doi:10.1016/0022-247X(83)90119-1
[11] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[12] Walk, M.,Theory of Duality in Mathematical Programming, Springer Verlag, Berlin, Germany, 1989. · Zbl 0679.90028
[13] Fan, K.,A Minimax Inequality and Applications, Inequalities III, Edited by O. Shisha, Academic Press, New York, pp. 103–113, 1972.
[14] Fan, K.,A Survey of Some Results Closely Related to the Knaster-Kuratowski-Mazurkiewicz Theorem, Game Theory and Applications, Edited by T. Ichiishi, A. Neyman, and Y. Tauman, Academic Press, San Diego, California, pp. 358–370, 1990. · Zbl 0735.90073
[15] Zhang, S. S., andYang, G. S.,Some Further Generalizations of Ky Fan’s Minimax Inequality and Its Applications to Variational Inequalities, Applied Mathematics and Mechanics, Vol. 11, pp. 1027–1034, 1990. · Zbl 0756.49007 · doi:10.1007/BF02015686
[16] Yao, J. C.,The Generalized Quasivariational Inequality Problem with Applications, Journal of Mathematical Analysis and Applications, Vol. 158, pp. 139–160, 1991. · Zbl 0739.49010 · doi:10.1016/0022-247X(91)90273-3
[17] Kum, S.,A Generalization of Generalized Quasivariational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 189, pp. 158–164, 1994. · Zbl 0804.49012 · doi:10.1006/jmaa.1994.1073
[18] Tuy, H.,On a General Minimax Theorem, Colloquium Mathematicum, Vol. 33, pp. 145–158, 1975. · Zbl 0322.90065
[19] Komornik, V.,Minimax Theorems for Upper Semicontinuous Functions, Acta Mathematica Academiae Scientiarum Hungaricae, Vol. 40, pp. 159–163, 1982. · Zbl 0505.49007 · doi:10.1007/BF01897316
[20] Kindler, J., andTrost, R.,Minimax Theorems for Interval Spaces, Acta Mathematica Hungarica, Vol. 54, pp. 39–49, 1989. · Zbl 0688.90061 · doi:10.1007/BF01950707
[21] Simons, S.,On Terkelsen’s Minimax Theorem, Bulletin of the Institute of Mathematics, Academia Sinica, Vol. 18, pp. 35–39, 1990. · Zbl 0714.49010
[22] König, H.,A General Minimax Theorem Based on Connectedness, Archives of Mathematics, Vol. 59, pp. pp. 55–64, 1992. · Zbl 0784.49007 · doi:10.1007/BF01199015
[23] König, H., andZartmann, F.,New Versions of the Minimax Theorem, Preprint, 1992.
[24] Kindler, J.,Intersection Theorems and Minimax Theorems Based on Connectedness, Journal of Mathematical Analysis and Applications, Vol. 178, pp. 529–546, 1993. · Zbl 0786.49007 · doi:10.1006/jmaa.1993.1323
[25] Kindler, J.,Topological Intersection Theorems, Proceedings of the American Mathematical Society, Vol. 117, pp. 1003–1011, 1993. · Zbl 0774.54016 · doi:10.1090/S0002-9939-1993-1127141-4
[26] Bogmér, A., Horváth, M., andJoó, I.,Minimax Theorems and Convexity, Matematikai Lapok, Budapest, Hungary, Vol. 34, pp. 149–170, 1987 (in Hungarian). · Zbl 0766.46001
[27] Sebestyén, Z.,A General Saddle-Point Theorem and Its Applications, Acta Mathematica Academiae Scientiarum Hungaricae, Vol. 56, pp. 303–307, 1990. · Zbl 0747.49014
[28] Wald, A.,Generalization of a Theorem by Von Neumann Concerning Zero-Sum Two-Person Games, Annals of Mathematics, Vol. 46, pp. 281–286, 1945. · Zbl 0063.08127 · doi:10.2307/1969023
[29] Wald, A.,Statistical Decision Functions, 2nd Edition, Chelsea, New York, 1971. · Zbl 0229.62001
[30] Kindler, J.,Über ein Minimaxtheorem von Young, Mathematische Operationsforschung und Statistik, Vol. 7, pp. 477–480, 1976. · Zbl 0363.90118
[31] Kassay, G., andKolumbán, J.,On a Generalized Saddle Point Theorem, Preprint 30, Mathematical Institute, Hungarian Academy of Sciences, 1993.
[32] Minty, G.,On the Extension of Lipschitz, Lipschitz-Hölder Continuous, and Monotone Functions, Bulletin of the American Mathematical Society, Vol. 76, pp. 334–339, 1970. · Zbl 0191.34603 · doi:10.1090/S0002-9904-1970-12466-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.