×

Sequential identification of Coulomb and viscous friction in robot drives. (English) Zbl 0875.93066


MSC:

93B30 System identification
93C85 Automated systems (robots, etc.) in control theory
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
Full Text: DOI

References:

[1] Armstrong, B., Friction: experimental determination, modelling and compensation, (Proc. IEEE International Conf. on Robotics and Automation (1988)), 1422-1427
[2] Armstrong-Helouvry, B., (Control of Machines with Friction (1991), Kluwer: Kluwer Norwell, MA) · Zbl 0782.93003
[3] Armstrong-Helouvry, B.; Dupont, P.; De Wit, C. Canudas, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30, 1083-1138 (1994) · Zbl 0800.93424
[4] Brookfield, D. J., Identification of Coulomb friction in robot drives and other mechanical systems through observation of third harmonic generation, (Proc. IMechE, Pt C, 208 (1994)), 329-336
[5] Canudas de Wit, C.; Carillo, J., A weighted RLS algorithm for systems with bounded distrubances, (Proc. IFAC Conf. on Identification and System Parameter Identification. Proc. IFAC Conf. on Identification and System Parameter Identification, Beijing, PRC (1988)), 879-884
[6] Canudas De Wit, C.; Åström, K. J.; Braun, K., Adaptive friction compensation in DC motor drives, IEEE J. Robotics Automation, RA-3, 681-685 (1987)
[7] Detchmendy, D. M.; Sridhar, R., Sequential estimation of states and parameters in noisy nonlinear dynamic systems, Trans. ASME J. Basic Engng, 362-368 (1966)
[8] Johnson, C. T.; Lorenz, R. D., Experimental identification of friction and its compensation in precise, position controlled mechanisms, (Proc. IEEE Industrial Applications Society Annual Meeting, Vol. 1-2 (1991)), 1400-1406
[9] Kagiwada, H. H.; Kalaba, R. E.; Schumitzky, A.; Sridhar, R., Invariant imbedding and sequential interpolating filters for non-linear processes, Trans. ASME: J. Basic Engng, 91, 195-200 (1969)
[10] Kalaba, R.; Tesfatsion, L., An exact sequential solution procedure for a class of discrete-time non-linear estimation problems, IEEE Trans. Autom. Control, AC-26, 1144-1149 (1981) · Zbl 0474.93055
[11] Kalaba, R.; Springarn, K.; Tesfatsion, L., A sequential method for non-linear filtering: numerical implementation and comparisons, J. Optim. Applics, 34, 541-559 (1981) · Zbl 0431.93047
[12] Karnopp, D., Computer simulation of slip-stick friction in mechanical dynamic systems, Trans. ASME: J. Dyn. Syst., Measurement, Control, 107, 100-103 (1985)
[13] Kubo, T.; Anwar, G.; Tomizuka, M., Application of nonlinear friction compensation to robot-arm control, (Proc. IEEE International Conf. on Robotics and Automation (1986)), 722-727
[14] Leonard, N. E.; Krishnaprasad, P. S., Adaptive friction compensation for bi-directional low velocity position tracking, (Proc. 31st IEEE Conf. on Decision and Control. Proc. 31st IEEE Conf. on Decision and Control, Tuscon, AZ (1992)), 267-273
[15] Phillips, S. M.; Ballou, K. R., Friction modelling and compensation for an industrial robot, J. Robotic Syst., 10, 947-971 (1993)
[16] Stanway, R.; Firoozian, R.; Mottershead, J. E., Estimation of the linearised damping coefficients of a squeeze-film vibration isolator, (Proc. IMechE, Pt C, 201 (1987)), 181-191
[17] Stanway, R.; Sproston, J. L.; Stevens, N. G., Non-linear modelling of an electro-rheological vibration damper, J. Electrostatics, 20, 167-184 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.