×

A geometric approach to the finitistic dimension conjecture. (English) Zbl 0871.16007

We prove that the finitistic dimension is bounded for modules of bounded \(k\)-dimension, for all finite dimensional algebras \(\Lambda\) over a field \(k\). Our argument avoids the use of model theory made by Jensen and Lenzing, when they first published this fact. We also show that, given \(d\) and \(m\): there is a number \(f(d,m)\) such that, for any \(d\)-dimensional \(k\)-algebra \(\Lambda\) and any \(\Lambda\)-module \(M\) with \(\dim_k M\leq m\), if \(\text{Ext}^i_\Lambda(M,\Lambda)\neq 0\) for all \(0\leq i\leq f(d,m)\) then \(\text{Ext}^i_\Lambda(M,\Lambda)\neq 0\) for all \(i\). This reveals some ultimate regularity of the injective resolution of the regular module in the general case.

MSC:

16E10 Homological dimension in associative algebras
16P10 Finite rings and finite-dimensional associative algebras
Full Text: DOI

References:

[1] M. Auslander andI. Reiten, On a generalized version of the Nakayama conjecture. Proc. Amer. Math. Soc.52, 69-74 (1975). · Zbl 0337.16004 · doi:10.1090/S0002-9939-1975-0389977-6
[2] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings. Trans. Amer. Math. Soc.95, 466-488 (1960). · Zbl 0094.02201 · doi:10.1090/S0002-9947-1960-0157984-8
[3] R. Bautista, On algebras of strongly unbounded representation type. Comment. Math. Helv.60, 392-399 (1985). · Zbl 0584.16017 · doi:10.1007/BF02567422
[4] R. Bautista, P. Gabriel, A. V. Roiter andL. Salmerón, Representation-finite algebras and multiplicative bases. Invent. Math.81, 217-285 (1985). · Zbl 0575.16012 · doi:10.1007/BF01389052
[5] K. Bongartz, Indecomposables are standard. Comment. Math. Helv.60, 400-410 (1985). · Zbl 0591.16014 · doi:10.1007/BF02567423
[6] H.Cartan and S.Eilenberg, Homological Algebra. Princeton-New Jersey 1956.
[7] C. Cibils, The syzygy quiver and the finitistic dimension. Comm. Algebra,21 (11), 4167-4171 (1993). · Zbl 0792.16010 · doi:10.1080/00927879308824791
[8] R. R. Colby andK. R. Fuller, A note on the Nakayama conjectures. Tsukuba J. Math.14, 343-352 (1990). · Zbl 0741.16004
[9] K. R. Fuller andY. Wang, Redundancy in resolutions and finitistic dimensions in noetherian rings. Comm. Algebra21 (8), 2983-2994 (1993). · Zbl 0782.16001 · doi:10.1080/00927879308824715
[10] P. Gabriel, Finite representation type is open. Representations of algebras, LNM488, 132-155. Berlin-Heidelberg-New York 1975.
[11] C. Geiss, On degenerations of tame and wild algebras. Arch. Math.64, 11-16 (1995). · Zbl 0828.16013 · doi:10.1007/BF01193544
[12] E. L. Green, E. Kirkman andJ. Kuzmanovich, Finitistic dimension of finite dimensional monomial algebras. J. Algebra136, 37-50 (1991). · Zbl 0727.16003 · doi:10.1016/0021-8693(91)90062-D
[13] E. L. Green andB. Zimmermann-Huisgen, Finitistic dimension of artinian rings with vanishing radical cube. J. Algebra136, 37-50 (1991). · Zbl 0727.16003 · doi:10.1016/0021-8693(91)90062-D
[14] K. Igusa andD. Zacharia, Syzygy pairs in a monomial algebra. Proc. Amer. Math. Soc.108, 601-604 (1990). · Zbl 0688.16032 · doi:10.1090/S0002-9939-1990-1031675-8
[15] J. P. Jans, Some generalizations of finite projective dimension. Illinois J. Math.5, 334-344 (1961). · Zbl 0099.02302
[16] J. P.Jans, Rings and homology. New York 1964. · Zbl 0141.02901
[17] C. U. Jensen andH. Lenzing, Homological dimension and representation type of algebras under base field extension. Manuscripta Math.39, 1-13 (1982). · Zbl 0498.16023 · doi:10.1007/BF01312441
[18] C. U.Jensen and H.Lenzing, Model theoretic algebra. New York 1989. · Zbl 0728.03026
[19] F.Larrión, A. G.Raggi-Cárdenas y L.Salmerón, Rudimentes de mansedumbre y salvajismo en teoría de representaciones. Aportaciones Mat.5, Soc. Mat. Mex. 1995.
[20] Q. Mazzola, The algebraic and geometric classification of associative algebras of dimension five. Manuscripta Math.27, 81-101 (1979). · Zbl 0446.16033 · doi:10.1007/BF01297739
[21] A. H. Schofield, Bounding the global dimension in terms of the dimension. Bull. London Math. Soc.17, 393-394 (1985). · Zbl 0572.16014 · doi:10.1112/blms/17.4.393
[22] H.Tachikawa, Quasi-Frobenius rings and generalizations. LNM351, Berlin-Heidelberg-New York 1973. · Zbl 0271.16004
[23] Y. Wang, A note on the finitistic dimension conjecture. Comm. Algebra22 (7), 2525-2528 (1994). · Zbl 0804.16006 · doi:10.1080/00927879408824974
[24] B. Zimmermann-Huisgen, Predicting syzygies over monomial relation algebras. Manuscripta Math.70, 157-182 (1991). · Zbl 0723.16003 · doi:10.1007/BF02568368
[25] B. Zimmermann-Huisgen, Homological domino effects and the first finitistic dimension conjecture. Invent. Math.108, 369-383 (1992). · Zbl 0792.16011 · doi:10.1007/BF02100610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.