×

Modeling and justification of an eigenvalue problem for a plate inserted in a three-dimensional support. (English) Zbl 0866.73031

(From the author’s abstract.) We consider a problem in three-dimensional linearized elasticity posed over a domain consisting of a plate with thickness \(2\varepsilon\) inserted into a solid. We assume that the Lamé constants of the material constituting the plate vary as \(\varepsilon^{-3}\), the density varies as \(\varepsilon^{-1}\), and the Lamé constants and density of the material constituting the “three-dimensional“ supporting structure vary as \(\varepsilon^{-2-s}\) where \(s\in ] 0,1]\). We prove the convergence of the eigenvalues of the three-dimensional problem as \(\varepsilon\) approaches zero either to the eigenvalues of the support, or to the eigenvalues of the plate, which then transversally vibrates at the limit. By contrast with earlier works, these “limit” eigenvalue problems are independent. Moroever, we can prove that the eigenfunctions of the “three-dimensional” supporting structure vary as \(\varepsilon^{2+s/2}\), while the eigenfunctions of the plate vary as \(\varepsilon^2\) for the tangential components, and as \(\varepsilon\) for the normal component.
Reviewer: S.Jiang (Beijing)

MSC:

74K20 Plates
74B05 Classical linear elasticity
35Q72 Other PDE from mechanics (MSC2000)

References:

[1] F. BOURQUIN and P. G. CIARLET, 1989, Modeling and Justification of Eigenvalue Problems for Jonctions between Elastic Structures, J. Funct. Anal., 87, pp. 392-427. Zbl0699.73010 MR1026860 · Zbl 0699.73010 · doi:10.1016/0022-1236(89)90017-7
[2] P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi Structures : An asymptotic Analysis, Masson, Paris and Springer-Verlag, Heidelberg. Zbl0706.73046 MR1071376 · Zbl 0706.73046
[3] P. G. CIARLET and P. DESTUYNDER, 1979, A justification of the two-dimensional plate model, J. Mécanique, 18, pp. 315-344. Zbl0415.73072 MR533827 · Zbl 0415.73072
[4] P. G. CIARLET and S. KESAVAN, 1981, Modélisation de la jonction entre un corps élastique tri-dimensionnel et une plaque, C. R.Acad. Sci. Paris, Série I 305,pp 55-58. Zbl0632.73015 MR902275 · Zbl 0632.73015
[5] P. G. CIARLET and H. LE DRET, 1989, Justification of boundary conditions of a clamped plate by an asymptotic analysis, Asymptotic Analysis, 2, pp. 257-277. Zbl0699.73011 MR1030351 · Zbl 0699.73011
[6] P. G. CIARLET, H. LE DRET and R. NZENGWA, 1987, Two dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comp. Methods Appl. Mech. Engrg., 26, pp. 149-172. Zbl0489.73057 MR626720 · Zbl 0489.73057 · doi:10.1016/0045-7825(81)90091-8
[7] P. G. CIARLET, H. LE DRET and R. NZENGWA, 1989, Junctions between three-dimensional and two-dimensional liearly elastic structures, J. Math. Pures Appl.,68, pp. 261-295. Zbl0661.73013 MR1025905 · Zbl 0661.73013
[8] P. G. CIARLET and J. C. PAUMIER, 1986, A justification of the Marguerre von Karman equations, Comput, Mech, I, pp. 177-202. Zbl0633.73069 · Zbl 0633.73069 · doi:10.1007/BF00272623
[9] R. COURANT and D. HILBERT, 1953, Methods of Mathematical Physics, Vol. 1, Interscience, New York. Zbl0051.28802 MR65391 · Zbl 0051.28802
[10] P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Thèse d’état, Université Pierre et Marie Curie, Paris (1980).
[11] P. DESTUYNDER, 1986, Une Théorie Asymptotique des Plaques Minces en Élasticité Linéarisée, Masson, Paris. Zbl0627.73064 MR830660 · Zbl 0627.73064
[12] G. DUVAUT and J. L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Dunod, Paris. Zbl0298.73001 MR464857 · Zbl 0298.73001
[13] W. T. KOITER, 1970, On the foundation of the linear theory of thin elastic shells, Proc. Kon. Nederl. Akad Wetensch., B 73, pp. 169-195. Zbl0213.27002 MR280050 · Zbl 0213.27002
[14] J. NECAS, 1967, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris. Zbl1225.35003 MR227584 · Zbl 1225.35003
[15] A. RAOULT, 1990, Asymptotic modeling of the elastodynamics of a multi-structure, Asymptotic Analysis, 6, 73-108. Zbl0777.73033 MR1188078 · Zbl 0777.73033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.