×

3-D Schapery representation for non-linear viscoelasticity and finite element implementation. (English) Zbl 0865.73014

Summary: On the basis of the one-dimensional Schapery representation for nonlinear viscoelasticity, a three-dimensional constitutive model incorporating the effects of temperature and physical aging is developed for isotropic nonlinear viscoelastic materials. Adopting the assumption that the hydrostatic and deviatoric responses are uncoupled, the constitutive equation is expressed in incremental form for both compressible and incompressible materials, with the hereditary integral updated at the end of each time increment by recursive computation. The proposed model is implemented in the finite element package MARC. Numerical examples are given to demonstrate the effectiveness of the model and the numerical algorithms.

MSC:

74D05 Linear constitutive equations for materials with memory
74D10 Nonlinear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics

Software:

MARC
Full Text: DOI

References:

[1] Buckley, C. P.; McCrum, N. G. 1974: The relation between linear and non-linear viscoelasticity of polypropylene. J. Mater. Sci. 9: 2064-2066 · doi:10.1007/BF00540560
[2] Flory, R. J. 1961: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57: 829-838 · doi:10.1039/tf9615700829
[3] Henriksen, M. 1984: Non-linear viscoelastic stress analysis ? a finite element approach, Computers and Structures 18: 133-139 · Zbl 0514.73072 · doi:10.1016/0045-7949(84)90088-9
[4] Heidweiller, A. J. 1994: Proc. 10th Biennial European Conference on Fracture, Berlin, Germany, September 1994, 741-746
[5] Lai, J. 1995: Non-linear deformation behaviour of high-density polyethylene, Ph.D. thesis, Delft University Press
[6] Lubliner, J. 1985: A model for rubber viscoelasticity, Mech. Res. Comm. 12, 233-245 · doi:10.1016/0093-6413(85)90075-8
[7] MARK k5.2 1993: User’s Manuals
[8] Mindel, M. J.; Brown, N. 1993: Creep and recovery of polycarbonate, J. Mater. Sci. 8: 863-870 · doi:10.1007/BF02397916
[9] Ogden, R. W. 1984: Non-linear elastic deformation, Chichester, UK., Ellis, Horwood · Zbl 0551.73043
[10] Pao, Y. H.; Marin, J. 1953: J. Appl. Mech. 19: 478-484
[11] Rooijackers, H. F. L. 1988: A numerical implementation of the Schapery model for nonlinear viscoelasticity, PhD thesis, Eindhoven University of Technology, The Netherlands
[12] Schapery, R. A. 1969: On the characterisation of non-linear viscoelastic materials. J. Polym. Eng. Sci. 9, 295-310 · doi:10.1002/pen.760090410
[13] Simo, J. C.; Taylor, R. L.; Pister, K. S. 1985: Variational and projection methods for the volume constraint in finite deformation, Comput. Meths. Appl. Mech. Eng. 51, 177-208 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[14] Simo, J. C. 1987: On a fully three-dimensional finite strain viscoelastic damage model: formulation and computational aspects, Comput. Meths. Appl. Mech. Eng. 60: 153-173 · Zbl 0588.73082 · doi:10.1016/0045-7825(87)90107-1
[15] Struik, L. C. E. 1978: Physical ageing in amorphous polymers and other materials, Amsterdam, Elsevier
[16] Williams, M. L.; Landel, R. F.; Ferry, J. D. 1955: J. Amer. Chem. Soc. 77: 3701-3707 · doi:10.1021/ja01619a008
[17] Zhang, L.; Ernst, L. J. 1993: A three dimensional model for non-linear viscoelasticity. In: Dijksman, J. F.; Nieuwstradt, F. T. M. (ed): Topics in applied mechanics, pp. 253-260, Kluwer Academic Publisher · Zbl 0870.73023
[18] Van der Zwet, M. J. M. 1992: Proc. 9th Biennial European Conference on Fracture, Varna, Bulgaria, September 1992, 196-201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.