×

The limit of the anisotropic double-obstacle Allen-Cahn equation. (English) Zbl 0865.35073

Summary: We prove that solutions of the anisotropic Allen-Cahn equation in double-obstacle form \[ \varepsilon\partial_t\varphi-\varepsilon\lambda A'(\nabla\varphi)-{1\over\varepsilon} \varphi={\pi\over 4} u\quad\text{in }[|\varphi|<1], \] where \(A\) is a strictly convex function, homogeneous of degree two, converge to an anisotropic mean-curvature flow \(V_n=-\text{tr}(B(N)D^2B(N)R)-B(N)u\), when this equation admits a smooth solution in \(\mathbb{R}^n\). Here, \(V_N\) and \(R\) respectively denote the normal velocity and the second fundamental form of the interface, and \(B:=\sqrt{2A}\). More precisely, we show that the Hausdorff-distance between the zero-level set of \(\varphi\) and the interface of the above anisotropic mean-curvature flow is of order \(O(\varepsilon^2)\).

MSC:

35K85 Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators
35K55 Nonlinear parabolic equations
Full Text: DOI

References:

[1] DOI: 10.1016/0022-0396(92)90146-E · Zbl 0765.35024 · doi:10.1016/0022-0396(92)90146-E
[2] DOI: 10.1007/BF00254827 · Zbl 0608.35080 · doi:10.1007/BF00254827
[3] DOI: 10.1007/978-1-4612-0885-3_2 · doi:10.1007/978-1-4612-0885-3_2
[4] DOI: 10.1016/0001-6160(79)90196-2 · doi:10.1016/0001-6160(79)90196-2
[5] DOI: 10.1007/BF02186838 · Zbl 0844.35044 · doi:10.1007/BF02186838
[6] DOI: 10.1098/rspa.1994.0030 · Zbl 0814.35044 · doi:10.1098/rspa.1994.0030
[7] DOI: 10.1007/BF00251230 · Zbl 0616.76004 · doi:10.1007/BF00251230
[8] DOI: 10.1142/S0218202593000369 · Zbl 0802.65124 · doi:10.1142/S0218202593000369
[9] DOI: 10.1103/PhysRevE.48.2016 · doi:10.1103/PhysRevE.48.2016
[10] DOI: 10.1002/cpa.3160450903 · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[11] Mottoni, C. R. Acad. Sci. Paris Ser. 1 Math. 309 pp 453– (1989)
[12] Nochetto, Convergence of double obstacle problems to the geometric motions of fronts (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.