×

A calculus for set-valued maps and set-valued evolution equations. (English) Zbl 0856.49016

The author considers a range of problems related to differential calculus of set-valued maps. The proposed constructions are developed on the base of the concept of a multiaffine mapping or, simply, a multiaffine. By the definition a multiaffine is the mapping whose graph may be represented as the union of the graphs of a family of single-valued functions \(L(x) = Ax + b\), where \(x \in R^m\), \(A\) is an \(n \times m\) matrix and \(b \in R^n\). The family is characterized by a set \(C\) of pairs \((A,b)\) compact in the appropriate product of spaces. The set \(C\) is called a generator. The latter is not always defined by the multiaffine uniquely.
A set-valued analog of the differential, which is called directive, is introduced via approximation of a multifunction by a multiaffine. Directional, partial and one-sided directional are defined. Basic rules of the calculus of directives are derived. Using these rules, necessary conditions of optimality in min-max and max-min problems are obtained.
The author provides an extensive survey and comparison with other works in this direction. It is erroneously stated that an eclipset [see C. Lemaréchal and J. Zowe, Optimization 22, No. 1, 3-37 (1991; Zbl 0743.47039)] can be represented as a multiaffine. An alternative approach to extend the concept of differential to set-valued maps is described in a reviewer’s article [Dokl. Akad. Nauk, Ross. Akad. Nauk 340, 164-167 (1995)] which is not included in the survey.
In the last sections of the paper the space of multiaffines is supplied with metrics, that allows to investigate set-valued differential equations. Existence and uniqueness theorems are proved.
Reviewer: D.Silin (Martinez)

MSC:

49J52 Nonsmooth analysis
26E25 Set-valued functions
58C06 Set-valued and function-space-valued mappings on manifolds
34G20 Nonlinear differential equations in abstract spaces
54C60 Set-valued maps in general topology
58D25 Equations in function spaces; evolution equations

Citations:

Zbl 0743.47039
Full Text: DOI

References:

[1] Arahovitis, J.: Multivalued linear mappings and matrices,Math. Balkanica 3 (1973), 3-8. · Zbl 0296.15011
[2] Artstein, Z.: On the calculus of set-valued functions,Indiana Univ. Math. J. 24 (1974), 433-441. · Zbl 0296.28015 · doi:10.1512/iumj.1974.24.24034
[3] Artstein, Z.: Piecewise linear approximations of set-valued maps,J. Approx. Theory 56 (1989), 41-45. · Zbl 0675.41041 · doi:10.1016/0021-9045(89)90131-7
[4] Artstein, Z.: First order approximations for differential exclusions,Set-Valued Anal. 2 (1994), 7-17. · Zbl 0811.34011 · doi:10.1007/BF01027089
[5] Aubin, J.-P.: Contingent derivatives of set-valued maps and existence of solutions to non-linear inclusions and differential inclusions, in L. Nachbin (ed.),Mathematical Analysis and Applications, Academic Press, New York, 1981, pp. 159-229.
[6] Aubin, J.-P.: Mutational equations in metric spaces,Set-Valued Anal. 1 (1993), 3-46. · Zbl 0784.34015 · doi:10.1007/BF01039289
[7] Aubin, J.-P. and Cellina, A.:Differential Inclusions, Springer-Verlag, Berlin, 1984. · Zbl 0538.34007
[8] Aubin, J.-P. and Frankowska, H.:Set-Valued Analysis, Birkh?user, Basel, 1990.
[9] Aumann, R. J.: Integrals of set-valued functions,J. Math. Anal. Appl. 12 (1965), 1-12. · Zbl 0163.06301 · doi:10.1016/0022-247X(65)90049-1
[10] Banks, H. T. and Jacobs, M. Q.: A differential calculus for multifunctions,J. Math. Anal. Appl. 29 (1970), 246-272. · Zbl 0191.43302 · doi:10.1016/0022-247X(70)90078-8
[11] Bhatia, N. P. and Szeg?, G. P.:Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.
[12] Brandao Lopes Pinto, A. J., De Blasi, F. S. and Iervolino, F.: Uniqueness and existence theorems for differential equations with compact convex valued solutions,Boll. Un. Mat. Ital. 4 (1971), 47-54.
[13] Bridgland, T. F.: Trajectory integrals of set-valued functions,Pacific J. Math. 33 (1970), 43-67. · Zbl 0193.01201
[14] Burden, R. L., Faires, J. D. and Reynolds, A. C.:Numerical Analysis, Pindle, Weber & Schmidt, Boston, 1978.
[15] Bushaw, D.: Dynamical polysystems and optimization,Contrib. Differential Equations 2 (1963), 351-365. · Zbl 0131.10403
[16] De Blasi, F. S.: On the differentiability of multifunctions,Pacific J. Math. 66 (1976), 67-81. · Zbl 0348.58004
[17] De Blasi, F. S. and Iervolino, F.: Euler method for differential equations with set-valued solutions,Boll. Un. Mat. Ital. 4 (1971), 941-949. · Zbl 0282.34007
[18] Debreu, G.: Integration of correspondences, inProc. 5th Berkeley Symp. Math. Stat. and Prob. Vol. II, University of California Press, 1967, pp. 351-372.
[19] Deimling, K.:Multivalued Differential Equations, De Gruyter, Berlin, 1992. · Zbl 0760.34002
[20] Delfour, M. C. and Zolesio, J.-P.: Shape sensitivity analysis via min max differentiability,SIAM J. Control Optim. 26 (1988), 834-862. · Zbl 0654.49010 · doi:10.1137/0326048
[21] Delfour, M. C. and Zolesio, J.-P.: Velocity method and Lagrangian formulation for the computation of the shape Hessian,SIAM J. Control Optim. 29 (1991), 1414-1442. · Zbl 0747.49007 · doi:10.1137/0329072
[22] Deutsch, F. and Singer, I.: On single-boundedness of convex set-valued maps,Set-Valued Anal. 1 (1993), 97-103. · Zbl 0807.46011 · doi:10.1007/BF01039295
[23] Donchev, A. and Lempio, F.: Difference methods for differential inclusions: A survey,SIAM Rev. 34 (1992), 263-294. · Zbl 0757.34018 · doi:10.1137/1034050
[24] Doyen, L.: Filippov and invariance theorems for mutational inclusions of tubes,Set-Valued Anal. 1 (1993), 289-303. · Zbl 0813.49021 · doi:10.1007/BF01027639
[25] Doyen, L.: Shape Lyapunov functions and stabilization of reachable tubes of control problems,J. Math. Anal. Appl. 184 (1994), 222-228. · Zbl 0811.93052 · doi:10.1006/jmaa.1994.1195
[26] Doyen, L.: Inverse function theorems and shape optimization,SIAM J. Control Optim. 32 (1994), 1621-1642. · Zbl 0816.49030 · doi:10.1137/S036301299222634X
[27] Fleming, W. H.:Functions of Several Variables, Addison-Wesley, Reading, MA, 1965. · Zbl 0136.34301
[28] Frankowska, H.: Local controllability and infinitesimal generators of semigroups of set-valued maps,SIAM J. Control Optim. 25 (1987), 412-432. · Zbl 0625.49015 · doi:10.1137/0325024
[29] Frankowska, H.: Some inverse mapping theorems,Ann. Inst. Henri Poincar?, Analyse non lin?aire 7 (1990), 183-234. · Zbl 0727.26014
[30] Hermes, H.: Calculus of set-valued functions and control,J. Math. Mech. 18 (1968), 47-60. · Zbl 0175.05101
[31] Hukuhara, M.: Integration des applications mesurable dont la valeur est compact convexe,Funk. Eku. 10 (1967), 205-223. · Zbl 0161.24701
[32] Klein, E. and Thompson, A. C.:Theory of Correspondences, Wiley, New York, 1984. · Zbl 0556.28012
[33] Kurzhanski, A. B. and Filippova, T. F.: On the set-valued calculus in problems of viability and control for dynamic processes: The evolution equation, in Attouchet. al. (eds),Analyse non lin?aire, Gauthier-Villars, Paris, 1989, pp. 339-363. · Zbl 0693.49007
[34] Kurzhanski, A. B. and Nikonov, O. I.: On the problem of synthesizing control strategies. Evolution equations and multivalued integration,Soviet Math. Dokl. 41 (1990), 300-305. · Zbl 0732.93027
[35] Lemar?chal, C. and Zowe, J.: The eclipsing concept to approximate a multi-valued mapping,Optimization 22 (1991), 3-37. · Zbl 0743.47039 · doi:10.1080/02331939108843638
[36] Lin, Y., Sontag, E. D. and Wang, Y.: A smooth converse Lyapunov theorem for robust stability,SIAM J. Control Optim,, to appear (preliminary version entitled ?Recent results on Lyapunov-theoretic techniques for nonlinear stability?, Proc. Amer. Automatic Control Conf., Baltimore, 1994, pp. 1771-1775).
[37] Lintz, R. G. and Buonomano, V.: The concept of differential equations in topological spaces and generalized mechanics,J. Reine Angew. Math. 265 (1974), 31-70. · Zbl 0274.54010
[38] Martelli, M. and Vignoli, A.: On differentiability of multi-valued maps,Boll. Un. Mat. Ital. 10 (1974), 701-712. · Zbl 0311.46029
[39] Matheron, G.:Random Sets and Integral Geometry, Wiley, New York, 1975. · Zbl 0321.60009
[40] Mordukhovich, B.: Sensitivity analysis for constraint and variational systems by means of set-valued differentiation,Optimization, to appear. · Zbl 0815.49013
[41] Nikolski, M. S.: Local approximation of first order to set-valued mappings, in: A. Kurzhanski and V. Veliov (eds),Set-Valued Analysis and Differential Inclusions, Birkh?user, Boston, to appear.
[42] Panasyuk, A. I.: Differential equations in metric spaces,Differential Equations 21 (1985), 914-921. · Zbl 0624.34056
[43] Panasyuk, A. I.: Equations of attainable set dynamics, Part I: Integral funnel equations,J. Optim. Theory Appl. 64 (1990), 349-366. · doi:10.1007/BF00939453
[44] Panasyuk, A. I.: Quasidifferential approximation equations in metric spaces under Caratheodory-type conditions,Differential Equations 28 (1992), 1073-1083.
[45] Penot, J.-P.: Differentiability of relations and differential stability of perturbed optimization problems,SIAM J. Control Optim. 22 (1984), 529-551; erratum:26 (1988), 997-998. · Zbl 0552.58006 · doi:10.1137/0322033
[46] Polovinkin, E. S. and Smirnov, G. V.: Differentiation of multivalued mappings and properties of solutions of differential inclusions,Soviet Math. Dokl. 33 (1986), 662-666. · Zbl 0659.34013
[47] Rockafellar, R. T.: Proto-differentiability of set-valued mappings and its applications in optimization, in Attouch,et. al. (eds),Analyse non lin?aire, Gauthier-Villars, Montreal, 1989, pp. 449-482. · Zbl 0674.90082
[48] Roxin, E.: Stability in general control systems,J. Differential. Equations 1 (1965), 115-150. · Zbl 0143.32302 · doi:10.1016/0022-0396(65)90015-X
[49] Roxin, E.: On generalized dynamical systems defined by contingent equations,J. Differential Equations 2 (1965), 188-205. · Zbl 0135.30802 · doi:10.1016/0022-0396(65)90019-7
[50] Rubinov, A. M.: The contingent derivative of a multivalued mapping and differentiability of the maximum under connected constraints,Sib. Math. Zh. 26 (1985), 147-155. · Zbl 0589.90079
[51] Wolenski, P.: The exponential formula for the reachable set of Lipschitz differential inclusions,SIAM J. Control Optim. 28 (1990), 1148-1161. · Zbl 0736.34015 · doi:10.1137/0328062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.