×

A note on rationality of orbital integrals on a \(p\)-adic group. (English) Zbl 0856.22019

Let \(F\) be a non-Archimedean field with valuation function val: \(F\to\mathbb{Z}\cup \{\infty\}\), the ring of integers \(O_F\) and the maximal ideal \(P_F\). Let \(q\) be the cardinality of the residue field \(O_F/P_F\). Choose a uniformizer \(\widetilde \omega\) in \(O_F\) with \(|\widetilde \omega|= q^{- 1}\). Put \(\text{ac}(x)= x \widetilde \omega^{- \text{val}(x)}\). Given \(f\in F[x]\), \(f\not\in F\), a locally constant function \(\Phi: F^n \to \mathbb{C}\) with compact support, and a character \(\chi\) of \(O^X_F\) (with \(\chi(0)= 0\)), the local Igusa zeta function is defined by \[ Z_\Phi(s, \chi, f)= \int_{F^n} \Phi(x) \chi(\text{ac}(f(x)))|f(x)|^s\cdot |dx|. \] By a regular prehomogeneous vector space (p.v.s.) over \(F\) we mean a triple \((G, \rho, V)\) wherein: (i) \(G\) is a reductive algebraic group defined over \(F\); (ii) \(V\) is a finite-dimensional vector space over \(F\); (iii) \(\rho\) is a rational representation of \(G\) on \(V\); (iv) there is a proper algebraic set \(S\subset V\) such that \(V- S\) constitutes a single \(G\)-orbit; (v) the isotropy subgroup \(G_x\) of any \(x\in V- S\) is reductive.
Given a rational character \(\chi\) of \(G\) defined over \(F\), then a nonzero rational function \(f\) on \(V\), such that \(f(\rho(g)\cdot x)= \chi(g) f(x)\) for all \(g\) in \(G\) and all \(x\) in \(V\), is said to be a relative invariant with respect to \(\chi\) for \((G, \rho, V)\). Let \(\Omega\) denote an open \(G(F)\)-orbit in \(V(F)\), \(\varphi\) a non-trivial relative invariant, \(\Phi\) a Schwartz-Bruhat function on \(V(F)\). The local orbital zeta function \(Z_\Phi(\Omega, \varphi, s)\) is defined by \[ Z_\Phi(\Omega, \varphi, s)= \int_\Omega \Phi(x) |\varphi(x)|^s |dx|. \] \(Z_\Phi\) is a rational function of \(q^{- s}\) (Igusa’s theorem).
In this paper, the author points out interesting connections between unipotent orbital integrals and Igusa local zeta functions (Theorem 3): For any \(x\in G(F)\) and any fixed \(E\equiv \mathbb{C}\) the following holds: \(f\in C^\infty_c(G(F))\) and \(f(y)\in E\) for all \(y\in F\Rightarrow \int_{O(x)} f\in E\). (Theorem 4): For each unipotent orbit \(O\) in \(G(F)\) the associated Shalika germ is a rational valued function. Hence it follows, in certain cases, that the coefficients appearing in the Harish-Chandra local character expansion are rational numbers.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
22E35 Analysis on \(p\)-adic Lie groups

References:

[1] D. Barbasch and A. Moy:Local character expansions, preprint, (1994) · Zbl 0885.22021
[2] J. Denef:The rationality of the Poincarë series associated to the p-adic points on a variety, Invent. Math.77, 1–23 (1984) · Zbl 0537.12011 · doi:10.1007/BF01389133
[3] Harish-Chandra:Admissible invariant distributions on reductive p-adic groups, Lie theories and applications, Queen’s papers in Pure, Appl. Math.48, 281–347 (1978)
[4] S. Helgason:Groups and Geometric Analysis, Academic Press, (1984) · Zbl 0543.58001
[5] R. Howe:The Fourier transform and germs of characters (Case of GL(n) over a p-adic field, Math. Ann.208, 305–322 (1974) · doi:10.1007/BF01432155
[6] J.-I. Igusa:Lectures on Forms of Higher Degree, Tata Institute of Fundamental Research, Bombay, (1979)
[7] J.-I. Igusa:Some results an p-adic complex powers, Amer. J. Math.106, 1013–1032 (1984) · Zbl 0589.14023 · doi:10.2307/2374271
[8] G. Lusztig:A unipotent support for irreducible representations, Advances in Math.94, 139–179 (1992) · Zbl 0789.20042 · doi:10.1016/0001-8708(92)90035-J
[9] A. Macintyre:On definable subsets of p-adic fields, J. Symb. Logic41, 605–610 (1976) · Zbl 0362.02046 · doi:10.2307/2272038
[10] C. Moeglin and J. L. Waldspurger:Modéles de Whitaker dégenérés pour des groupes p-adiques, Math Z.196, 427–452 (1987) · Zbl 0612.22008 · doi:10.1007/BF01200363
[11] A. Mortajine,Classification des espaces préhomogènes des type parabolique réguliers et de leur invariants relatifs, Travaux en Cours40, Hermann, Paris, (1991) · Zbl 0717.22007
[12] A. Moy and G. Prasad:Unramified Minimal K-types for p-adic groups, Invent. Math.116, 393–408 (1994) · Zbl 0804.22008 · doi:10.1007/BF01231566
[13] F. Murnaghan:Local character expansions for supercuspidal representations of SL(n), Pacific J. Math., to appear · Zbl 0909.22030
[14] F. Murnaghan:Characters of supercuspidal representations in classical groups, preprint, (1994)
[15] R. Rango Rao:Orbital integrals in reductive groups, Ann. of Math.96, 505–510 (1972) · Zbl 0302.43002 · doi:10.2307/1970822
[16] J. Rogawski:An application of the buiding to orbital integrals, Compositio Math.42, 417–423 (1981) · Zbl 0471.22020
[17] M. Sato and T. Kimura:A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J.65, 1–155 (1977) · Zbl 0321.14030
[18] T. Springer and R. Steinberg:Conjugacy Classes, Seminar on algebraic groups and related finite groups, Lecture Notes in Math.113 (1969)
[19] M. Tadic:Notes on representations of non-archimedean SL(n), Pacific J. Math.152, 375–396 (1992)
[20] M.-F. Vignéras:Caractérisation des intégrales orbitales sur un groupe réductif p-adique J. Fac. Sci. U. of Tokyo28 Sec. 14, 945–961 (1982)
[21] M. F. Vignéras:On formal dimensions for reductive P-adic groups, Festschrift in honor of I. Piatetski-Shapiro, Israel Math. Conference Proc. Vol2 (1990)
[22] E.B. Vinberg:On the classification of the nilpotent elements of graded Lie algebras, Soviet Math. Dokl.16, 1517–1520 (1975) · Zbl 0374.17001
[23] J. L. Waldspurger:,Homogeneneite de certaines distributions sur les groupes p-adique, preprint, (1992)
[24] J. L. Waldspurger:Quelques questions sur les integrales orbitales unipotents et les algebre de Hecke, preprint, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.