×

A construction of modular representations of classical Lie algebras. (English) Zbl 0856.17021

Let \(k\) be an algebraically closed field of characteristic \(p>3\) and \({\mathcal W}_l = \{\partial_i,x_i: [\partial_i, \partial_j] = [x_i,x_j]=0\), \([\partial_i,x_j] = \delta_{i,j}\),, \(j=1,2, \dots, l\}\) be the Weyl algebra over \(k\). Let \(m\) be an \(l\)-tuple of positive integers and \(b\) an \(l\)-tuple of non-zero elements of \(k\) and \(a\) any \(l\)-tuple of elements of \(k\). Denote by \({\mathcal P} (m,a,b)\) the representation of \({\mathcal W}_l\) on the vector space \(k[x_1,\dots,x_l]/(x_1^{p^{m_1}}-b_1,\dots,x_l^{p^{m_l}}-b_l)\) defined by setting \(x_ix^n=x^{n+\varepsilon_i}\), \(\partial_ix^n = b_i^{-1} (n_i+a_i)x^{n+(p^{m_i}-1) \varepsilon_i}\), where \(n=(n_1, \dots, n_l)\), \(x^{\varepsilon_i} = x_i\). The Weyl algebra \({\mathcal W}_l\) has subalgebras isomorphic to classical Lie algebras of types \(A_{l-1}\) and \(C_l\). In the paper restrictions of the \({\mathcal W}_l\)-module \({\mathcal P} (m,a,b)\) to these subalgebras are considered. These representations include a class of pointed torsion free representations, a class of irreducible nonrestricted representations, and a class of indecomposable representations of arbitrary higher dimension. Irreducible representations of the modular Weyl algebra are classified.

MSC:

17B50 Modular Lie (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

Citations:

Zbl 0856.17022
Full Text: DOI

References:

[1] S. Berman, On the construction of simple Lie algebras, J. Algebra 27 (1973), 158 – 183. · Zbl 0272.17003 · doi:10.1016/0021-8693(73)90171-3
[2] D. J. Britten, V. M. Futorny, and F. W. Lemire, Simple finite dimensional \( C({A_2})\) modules (to appear). · Zbl 0819.17007
[3] D. J. Britten and F. W. Lemire, Irreducible representations of \?_{\?} with a 1-dimensional weight space, Trans. Amer. Math. Soc. 273 (1982), no. 2, 509 – 540. · Zbl 0492.17004
[4] D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), no. 2, 683 – 697. · Zbl 0635.17002
[5] Универсал\(^{\приме}\)ные обертывающие алгебры., Издат. ”Мир”, Мосцощ, 1978 (Руссиан). Транслатед фром тхе Френч бы Ју. А. Бахтурин; Едитед бы Д. П. Žелобенко.
[6] S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), no. 2, 757 – 781. · Zbl 0712.17005
[7] Eric M. Friedlander and Brian J. Parshall, Modular representation theory of Lie algebras, Amer. J. Math. 110 (1988), no. 6, 1055 – 1093. · Zbl 0673.17010 · doi:10.2307/2374686
[8] Eric M. Friedlander and Brian J. Parshall, Deformations of Lie algebra representations, Amer. J. Math. 112 (1990), no. 3, 375 – 395. · Zbl 0714.17007 · doi:10.2307/2374747
[9] E. M. Friedlander and B. J. Parshall, Induction, deformation, and specialization of Lie algebra representations, Math. Ann. 290 (1991), no. 3, 473 – 489. · Zbl 0714.17008 · doi:10.1007/BF01459255
[10] V. G. Kac and B. Weisfeiler, Cojoint action of a semisimple algebraic group and the center of the enveloping algebra in characteristic p, Indag. Math. 38 (1976), 135-151. · Zbl 0324.17001
[11] Karl M. Peters, Characters of modular torsion free representations of classical Lie algebras, Comm. Algebra 22 (1994), no. 12, 4807 – 4826. · Zbl 0856.17022 · doi:10.1080/00927879408825106
[12] Zhiyong Shi, Classification of pointed weak torsion free representations for classical Lie algebras, J. Algebra 171 (1995), no. 3, 677 – 699. · Zbl 0814.17018 · doi:10.1006/jabr.1995.1033
[13] Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. · Zbl 0648.17003
[14] B. Ju. Veĭsfeĭler and V. G. Kac, The irreducible representations of Lie \?-algebras, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 28 – 36 (Russian).
[15] Hans Zassenhaus, The representations of Lie algebras of prime characteristic, Proc. Glasgow Math. Assoc. 2 (1954), 1 – 36. · Zbl 0059.03001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.