×

On shifted convolutions of \(\zeta^3(s)\) with automorphic \(L\)-functions. (English) Zbl 0855.11024

Let \(\zeta (s)\) be the Riemann zeta function, so \(\zeta^3 (s)= \sum_{n\geq 1} \tau_3 (n) n^{-s}\), where \(\tau_3 (n)\) is the number of factorizations \(n=klm\). Let \(f(z)\) be a holomorphic cusp form of weight \(k\) for the modular group, with Fourier expansion \(f(z)= \sum_{n\geq 1} a(n) n^{(k- 1)/2} \exp(2\pi i nz)\). The author studies the shifted convolution of \(\zeta^3\) with \(f\). That is, let \(\Phi (f, s)= \sum_{n\geq 1} \tau_3 (n) a(n-1) n^{-s}\). This sum converges absolutely for \(\operatorname{Re}(s)> 1\). The author proves that \(\Phi (f, s)\) has analytic continuation to \(\operatorname{Re}(s)> 23/24\). He also shows that \[ \Psi (f, x)= \sum_{n\leq x} \tau_3 (n) a(rn- 1)\ll x^{71/ 72+ \varepsilon}, \] uniformly in \(0< r< x^{1/ 24}\), where the implied constant depends on \(f\) and \(\varepsilon\); the weaker bound \(x^{1+ \varepsilon}\) follows directly from Deligne’s bound for \(a(n)\).
The proofs of these theorems are obtained by studying \(\sum g(n) \tau_3 (n) a(rn- 1)\) in place of \(\Psi (f, x)\), where \(g\) is a compactly-supported \(C^\infty\) function which is identically 1 on \([x/2, x]\) and has some additional properties. Following the work of Duke, Friedlander, and Iwaniec, the estimation of this sum may be obtained provided one controls a certain sum of Kloosterman sums times an appropriate smoothing function. Using the Poisson summation formula and Cauchy’s inequality, the problem is further reduced to the estimation of a certain three-variable Kloosterman-like sum. The author establishes such an estimate by applying the work of A. Adolphson and S. Sperber on exponential sums and Newton polyhedra [Ann. Math. (2) 130, 367–406 (1989; Zbl 0723.14017)], which is based on Deligne’s work on the Weil conjectures, along with techniques of Bombieri and Hooley to deal with some of the degenerate cases.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11M41 Other Dirichlet series and zeta functions
11N75 Applications of automorphic functions and forms to multiplicative problems
11L07 Estimates on exponential sums

Citations:

Zbl 0723.14017
Full Text: DOI

References:

[1] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra , Bull. Amer. Math. Soc. 16 (1987), no. 2, 282-286. · Zbl 0634.12018 · doi:10.1090/S0273-0979-1987-15518-2
[2] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra, Cohomology and estimates , Ann. of Math. (2) 130 (1989), no. 2, 367-406. JSTOR: · Zbl 0723.14017 · doi:10.2307/1971424
[3] A. Adolphson and S. Sperber, Exponential sums on \((\mathbf G_ m)^ n\) , Invent. Math. 101 (1990), no. 1, 63-79. · Zbl 0764.11037 · doi:10.1007/BF01231497
[4] E. Bombieri, On exponential sums in finite fields II , Invent. Math. 47 (1978), no. 1, 29-39. · Zbl 0396.14001 · doi:10.1007/BF01609477
[5] P. Deligne, La Conjecture de Weil I , Inst. Hautes Études Sci. Publ. Math. (1974), no. 43, 273-307. · Zbl 0287.14001 · doi:10.1007/BF02684373
[6] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms , Invent. Math. 70 (1982), no. 2, 219-288. · Zbl 0502.10021 · doi:10.1007/BF01390728
[7] W. Duke, J. Friedlander, and H. Iwaniec, Bounds for Automorphic \(L\)-functions , MSRI, Berkeley, CA, January 1992.
[8] W. Duke and H. Iwaniec, Estimates for coefficients of \(L\)-functions I , · Zbl 0745.11030
[9] B. Dwork, On the rationality of the zeta-function of an algebraic variety , Amer. J. Math. 82 (1960), 631-648. JSTOR: · Zbl 0173.48501 · doi:10.2307/2372974
[10] A. Good, Cusp forms and eigenfunctions of the Laplacian , Math. Ann. 255 (1981), no. 4, 523-548. · Zbl 0439.30031 · doi:10.1007/BF01451932
[11] C. Hooley, On exponential sums and certain of their applications , Number Theory Days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser., vol. 56, Cambridge University Press, Cambridge, 1982, pp. 92-122. · Zbl 0488.10041
[12] H. Iwaniec, Small eigenvalues of Laplacian for \(\Gamma_ 0(N)\) , Acta Arith. 56 (1990), no. 1, 65-82. · Zbl 0702.11034
[13] N. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups , Ann. of Math. Stud., vol. 116, Princeton University Press, Princeton, NJ, 1988. · Zbl 0675.14004
[14] R. Rankin, Modular Forms and Functions , Cambridge University Press, Cambridge, 1977. · Zbl 0376.10020
[15] R. Rankin, Sums of cusp form coefficients , Automorphic Forms and Analytic Number Theory (Montreal, PQ, 1989), Universite de Montreal, Centre de Researches Mathematiques, Montreal, 1990, pp. 115-121. · Zbl 0735.11023
[16] A. Selberg, On the estimation of Fourier coefficients of modular forms , Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1-15. · Zbl 0142.33903
[17] F. Shahidi, On certain \(L\)-functions , Amer. J. Math. 103 (1981), no. 2, 297-355. JSTOR: · Zbl 0467.12013 · doi:10.2307/2374219
[18] F. Shahidi, Third symmetric power \(L\)-functions for \(\mathrm GL(2)\) , Compositio Math. 70 (1989), no. 3, 245-273. · Zbl 0684.10026
[19] F. Shahidi, Automorphic \(L\)-functions, a survey , Automorphic Forms, Shimura Varieties and \(L\)-Functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, New York, 1990, pp. 415-437. · Zbl 0715.11067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.