×

Aurifeuillian factorizations and the period of the Bell numbers modulo a prime. (English) Zbl 0852.11008

The Bell integers \(B(n)\) are defined by \(\exp (\exp x-1)= \sum B(j) x^j/ j!\). The period mod \(p\) is considered for \(p\) prime [see G. T. Williams, Am. Math. Mon. 52, 323–327 (1945; Zbl 0060.08416)]. It is known to be a divisor of \(N_p= (p^p - 1)/(p - 1)\) (and conjecturally equal to \(N_p\)). This is verified for \(p < 102\) by eliminating all divisors of \(N_p\). The Aurifeuillian factorizations of \(N_p\) are algebraic, based on cyclotomy and serve as a starting point, for \(p\equiv 1\bmod 4\). (Factors of \(K_p (p^p + 1)/(p + 1)\) are included for good measure.) The inductive use of Bell identities, e.g., \(B(n+1)= \sum B(j) C^n_j\) and \(B(n+ p)= B(n)+ B(n+ 1)\) aid the calculation. Tables are included for factorizations by the elliptic curve and quadratic sieve for \(p < 180\).

MSC:

11B73 Bell and Stirling numbers
11A51 Factorization; primality
11Y05 Factorization
12E10 Special polynomials in general fields

Citations:

Zbl 0060.08416
Full Text: DOI

References:

[1] H. W. Becker and D. H. Browne, Problem E461 and solution, Amer. Math. Monthly 48 (1941), 701–703.
[2] Richard P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), no. 203, 131 – 149. · Zbl 0785.11011
[3] E. Cesaro, Sur une équation aux différences mêlées, Nouvelles Annales de Math. (3) 4 (1885), 36–40. · JFM 17.0337.01
[4] A. J. C. Cunningham, Factorisation of \(N=y^y\mp 1\) and \(x^{xy}\mp y^{xy}\), Messenger of Math. (2) 45 (1915), 49–75. · JFM 45.1243.01
[5] H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649 – 673. · Zbl 0629.10006 · doi:10.2307/1971363
[6] Jack Levine and R. E. Dalton, Minimum periods, modulo \?, of first-order Bell exponential integers., Math. Comp. 16 (1962), 416 – 423. · Zbl 0113.03402
[7] E. Lucas, Théorèms d’arithmétique, Atti R. Accad. Sci. Torino 13 (1877–78), 271–284.
[8] ——, Sur la série récurrente de Fermat, Bull. Bibl. Storia Sc. Mat. e Fis. 11 (1878), 783–789.
[9] T. Beth, N. Cot, and I. Ingemarsson , Advances in cryptology, Lecture Notes in Computer Science, vol. 209, Springer-Verlag, Berlin, 1985. · Zbl 0578.00015
[10] Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. · Zbl 0582.10001
[11] A. Schinzel, On primitive prime factors of \?\(^{n}\)-\?\(^{n}\), Proc. Cambridge Philos. Soc. 58 (1962), 555 – 562. · Zbl 0114.02605
[12] J. Touchard, Propriétés arithmétiques de certains nombres recurrents, Ann. Soc. Sci. Bruxelles 53A (1933), 21–31. · Zbl 0006.29102
[13] G. T. Williams, Numbers generated by the function \(e^{e^x-1}\), Amer. Math. Monthly 52 (1945), 323–327, . · Zbl 0060.08416
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.