×

Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. (English) Zbl 0851.73012

Summary: We present a formulation of isotropic finite strain thermoelasticity and address some aspects of its numerical implementation. On the theoretical side, an Eulerian setting of isotropic thermoelasticity is discussed, based on the Finger tensor as a strain measure. Novel aspects are a direct representation of the Eulerian thermoelastic moduli in terms of the Finger tensor, and a rigorous decomposition of the thermoelastic response functions into decoupled volumetric and isochoric contributions based on a multiplicative split of the Finger tensor into spherical and unimodular parts. An algorithmic procedure for the computation of the stresses and thermoelastic moduli, based on a representation of the free energy in terms of eigenvalues of the unimodular part of the Finger tensor, is developed and applied to model problems of strictly entropic and modified entropic thermoelasticity. Furthermore, two algorithms for the solution of the coupled problem are discussed, based on operator splits of the global field equations of thermoelasticity. The paper concludes with some representative numerical simulations of thermoelastic processes in rubber-like materials.

MSC:

74B20 Nonlinear elasticity
74A15 Thermodynamics in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] Biot, M. A., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253 (1956) · Zbl 0071.41204
[2] Boley, B. A.; Weiner, J. H., Theory of Thermal Stresses (1960), John Wiley & Sons: John Wiley & Sons New York · Zbl 0095.18407
[3] Chadwick, P., Thermoelasticity. The dynamic theory, (Sneddon, I. N.; Hill, R., Progress in Solid Mechanics (1960), North Holland: North Holland Amsterdam) · Zbl 1001.74515
[4] Green, A. E.; Adkins, J. E., Large Elastic Deformations and Nonlinear Continuum Mechanics (1960), Clarendon Press: Clarendon Press Oxford · Zbl 0090.17501
[5] Nowacki, W., Thermoelasticity (1962), Addison-Wesley: Addison-Wesley Reading, Mass · Zbl 0227.73008
[6] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., 13, 167-178 (1963) · Zbl 0113.17802
[7] Gurtin, M. E., On the thermodynamics of elastic materials, Math. Anal. Appl., 18, 39-44 (1967) · Zbl 0163.19305
[8] Carlson, D. E., Linear thermoelasticity, (Flügge, S., Handbuch der Physik, Vol. VI (1972), Springer: Springer Berlin), 297-346, 2a
[9] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice Hall: Prentice Hall Englewood Cliff, NJ · Zbl 0545.73031
[10] Ogden, R. W., Non-linear Elastic deformations (1984), Ellis Horwood: Ellis Horwood Chichester · Zbl 0541.73044
[11] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 528-592 (1940) · JFM 66.1021.04
[12] Flory, P., Thermodynamic relations for high elastic materials, Trans. Faraday Soc, 57, 829-838 (1961)
[13] Treolar, L. R.G., The Physics of Rubber Elasticity (1975), Clarendon Press: Clarendon Press Oxford
[14] Chadwick, P., Thermo-mechanics of rubberlike materials, Phil. Trans. R. Soc. Lond. A, 276, 371-403 (1974) · Zbl 0287.73005
[15] Chadwick, P.; Creasy, C. F.M., Modified entropic elasticity of rubberlike materials, J. Mech. Phys. Solids, 32, 337-357 (1974) · Zbl 0575.73010
[16] Ogden, R. W., Elastic deformations of rubberlike materials, (Hopkins, H. G.; Sewell, M. J., Mechanics of Solids, the Rodney Hill 60th Anniversary Volume (1982), Pergamon Press: Pergamon Press Oxford), 499-537 · Zbl 0491.73045
[17] Müller, I., Thermodynamics (1985), Pitman Advanced Publishing Program: Pitman Advanced Publishing Program Boston · Zbl 0637.73002
[18] Krawietz, A., Materialtheorie, (Mathematische Beschreibung des Phänomeno-Logischen Thermomechanischen Verhaltens (1986), Springer: Springer Berlin) · Zbl 0593.73001
[19] Oden, J. T., Finite element analysis of nonlinear problems in the dynamical theory of coupled thermoelasticity, Nuclear Engrg Design, 10, 465-475 (1969)
[20] Oden, J. T., Finite Elements of Nonlinear Continua (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0235.73038
[21] Argyris, J. H.; Doltsinis, J. St., On the natural formulation and analysis of large deformation coupled thermomechanical problems, Comput. Methods Appl. Mech. Eng., 25, 195-253 (1981) · Zbl 0489.73126
[22] Argyris, J. H.; Vaz, L. E.; William, K. J., Integrated finite-element analysis of coupled viscoplastic problems, J. Thermal Stresses, 4, 121-153 (1981)
[23] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[24] Armero, F.; Simo, J. C., A new unconditionable stable fractional step method for nonlinear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., 35, 737 (1992) · Zbl 0784.73085
[25] Duffett, G.; Reddy, B. D., The analysis of incompressible hyperelastic bodies by the finite element method, Comput. Methods Appl. Mech. Engrg., 41, 105-120 (1983) · Zbl 0522.73059
[26] Simo, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Engrg., 85, 273-310 (1991) · Zbl 0764.73104
[27] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Internat. J. Numer. Methods Engrg., 37, 1981-2004 (1994) · Zbl 0804.73067
[28] Wood, L., Practical time-steppin schemes, (Oxford Applied Mathematics and Computing Science Series (1990), Clarendon Press: Clarendon Press Oxford) · Zbl 0694.65043
[29] Doltsinis, J. St., Aspects of modelling and computation in the analysis of metal forming, Engrg. Comput., 7, 2-20 (1990)
[30] Ortega, J. M.; Rheinboldt, W. T., Iterative Solution of Nonlinear Equations in Several Variables (1972), Academic Press: Academic Press New York
[31] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, (Flügge, S., Handbuch der Physik, Bd. III (1965), Springer-Verlag: Springer-Verlag Berlin), 3 · Zbl 0779.73004
[32] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[33] Valanis, K. C.; Landel, R. F., The strain energy function of a hyperelastic material in terms of extension ratios, J. Appl. Phys., 38, 2997-3002 (1967)
[34] Betten, J., Interpolation methods for tensor functions, (Avula, J. R.; etal., Mathematical Modelling in Science and Technology (1984), Pergamon Press: Pergamon Press New York), 52-57 · Zbl 0546.41004
[35] Morman, K. N., The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids, J. Appl. Mech., 53, 726-728 (1986)
[36] Miehe, C.; Stein, E., A canonical model of multiplicative elasto-plasticity. Formulation and aspects of the numerical implementation, European J. Mech. A/Solids, 11, 25-43 (1992)
[37] Miehe, C., Computation of isotropic tensor functions, Comm. Appl. Numer. Methods, 9, 889-896 (1993) · Zbl 0796.65059
[38] Chadwick, P.; Ogden, R. W., On the definition of elastic moduli, Arch. Rat. Mech. Anal., 44, 41-53 (1971) · Zbl 0229.73007
[39] Chadwick, P.; Ogden, R. W., A theorem of tensor calculus and its application to isotropic elasticity, Arch. Rat. Mech. Anal., 44, 54-68 (1971) · Zbl 0229.73008
[40] Miehe, C., Zur Numerischen Behandlung thermomechanischer Prozesse, Forschungs- und Seminarberichte aus dem Bereich der Mechanik, (Report Nr. F88/6 (1988), Universität Hannover)
[41] Simo, J. C.; Armero, F., Geometrically nonlinear enhanced strain mixed methods and the Method of incompatible modes, Internat. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[42] Lu, S. C.H.; Pister, K. S., Decomposition of the deformation and representation of the free energy function for isotropic thermoelastic solids, Internat. J. Solids Structures, 11, 927-934 (1975) · Zbl 0315.73018
[43] Argyris, J. H.; Doltsinis, J. St.; Pimenta, P. M.; Wüstenberg, H., Thermomechanical response of solids at high strains-natural approach, Comput. Methods Appl. Mech. Engrg., 32, 3-57 (1982) · Zbl 0505.73062
[44] Truesdell, C., Rational Thermodynamics (1984), Springer: Springer New York · Zbl 0598.73002
[45] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (1989), McGraw-Hill: McGraw-Hill London · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.