×

Partial and full regularity for restricted classes of \(p\)-harmonic maps. (English) Zbl 0849.58020

A map \(u : B^3 \to S^2\) is axially symmetric if \(u : (r, \theta, z) \mapsto (\theta, \psi (r,z))\). The \(p\)-energy, for \(2 < p < 3\), has the form \(E_p (u) = \int_{B^3} |\nabla u |^pd\)vol. Estimates of the Hausdorff dimension of the singular set of a map minimizing the \(p\)-energy among axially symmetric maps are received. The existence of a large class of axially symmetric boundary data (including surjective data) whose members admit regular \(p\)-harmonic extensions is demonstrated.

MSC:

58E20 Harmonic maps, etc.
58J32 Boundary value problems on manifolds
58J70 Invariance and symmetry properties for PDEs on manifolds
Full Text: DOI

References:

[1] Schoen, R.; Uhlenbeck, K., A regularity theory for harmonic maps, J. diff. Geom., 18, 329 (1983) · Zbl 0521.58021
[2] Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. diff. Geom., 18, 253-268 (1983) · Zbl 0547.58020
[3] Hélein, F., Régularity des applications faiblement harmoniques entre une surface et une variété riemannienne, C.r. Acad. Sci. Paris, 312, 591-596 (1991) · Zbl 0728.35015
[4] Hélein, F., Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta math., 70, 203-218 (1991) · Zbl 0718.58019
[5] Evans, L., Partial regularity for stationary harmonic maps into spheres, Archs ration. Mech. Analysis, 116, 101-113 (1991) · Zbl 0754.58007
[6] Bethuel, F., On the singular set of stationary harmonic maps, Manuscripta math., 78, 417-443 (1993) · Zbl 0792.53039
[7] Fuchs, M., \(p\)-Harmonic obstacle problems part I: partial regularity theory, Annali Mat. pura appl., 156, 127-158 (1990) · Zbl 0715.49003
[8] Fuchs, M., \(p\)-Harmonic obstacle problems part II: extensions of maps and applications, Manuscripta math., 63, 381-419 (1988) · Zbl 0715.49004
[9] Fuchs, M., \(p\)-Harmonic obstacle problems part III: boundary regularity, Annali Mat. pura appl., 156, 159-180 (1990) · Zbl 0715.49005
[10] Hardt, R.; Lin, F. H., Maps minimizing the \(L^p\)-norm of the gradient, Communs pure appl. Math, 40, 555-588 (1987) · Zbl 0646.49007
[11] Luckhaus, S., Partial Hölder continuity for a minima of certain energies among maps into a Reimannian manifold, Indiana Univ. math. J., 37, 349-367 (1988) · Zbl 0641.58012
[12] Luckhaus, S., Convergence of minimizers for the \(p\)-Dirichlet integral, Math. Z., 213, 449-456 (1993) · Zbl 0798.58022
[13] Hardt, R.; Kinderlehrer, D.; Lin, F. H., The variety of configerations of static liquid crystals, (Berestycki, H.; Coron, J.-M.; Ekeland, I., Variational Methods (1990), Birkhäuser: Birkhäuser Berlin)
[14] Hildebrandt, S.; Kaul, H.; Wildman, K.-O., An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math., 188, 1-16 (1977) · Zbl 0356.53015
[15] Jäger, W.; Kaul, H., Uniqueness and stability of harmonic maps, and their Jacobi fields, Manuscripa math., 28, 269-291 (1979) · Zbl 0413.31006
[16] Fuchs, M., Some regularity theorems for mappings which are stationary points of the \(p\)-energy functional, Analysis, 9, 127-143 (1989) · Zbl 0683.49014
[17] Grotowski, J. F., Concentrated boundary data and axially symmetric harmonic maps, J. geom Analysis, 3, 279-292 (1993) · Zbl 0782.58017
[18] Zhang, D., The existence of nonminimal regular harmonic maps from \(B^3\) to \(S^2\), Annali Sci. norm. sup. Pisa, 16, 3, 355-365 (1989), Serie IV · Zbl 0701.58017
[19] Ladyzhenskaja, P. A.; Ural’Ceva, N. N., Linear and Quasilinear Elliptic Equations (1968), Academic Press: Academic Press Boston · Zbl 0164.13002
[20] Price, P., A monotonicity formula for Yang-Mills fields, Manuscripta math., 43, 131-156 (1983) · Zbl 0521.58024
[21] Fusco, N.; Hutchinson, J., Partial regularity for minimizers of certain functionals having non-quadratic growth, Annali Mat. pura appl., 155, 1-24 (1989) · Zbl 0698.49001
[22] Steffen, K., An Introduction to Harmonic Mappings, Erasmus lecture notes (1989) and SFB256 Universität Bonn Vorlesungsreihe, 18 (1991)
[23] Simon, L., Lectures on Geometric Measure Theory, (Proc. Centre Math. Analysis (1983), Australian National University Press: Australian National University Press New York) · Zbl 0546.49019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.