×

Symmetries and tau function of higher dimensional dispersionless integrable hierarchies. (English) Zbl 0845.58039

Summary: A higher dimensional analogue of the dispersionless KP hierarchy is introduced. In addition to the two-dimensional “phase space” variables \((k,x)\) of the dispersionless KP hierarchy, this hierarchy has extra spatial dimensions compactified to a two (or any even) dimensional torus. Integrability of this hierarchy and the existence of an infinite dimensional of “additional symmetries” are ensured by an underlying twistor theoretical structure (or a nonlinear Riemann-Hilbert problem). An analogue of the tau function, whose logarithm gives the \(F\) function (“free energy” or “prepotential” in the context of matrix models and topological conformal field theories), is constructed. The infinite dimensional symmetries can be extended to this tau (or \(F)\) function. The extended symmetries, just like those of the dispersionless KP hierarchy, obey an anomalous commutation relations.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q58 Other completely integrable PDE (MSC2000)

References:

[1] DOI: 10.1143/JPSJ.50.3806 · Zbl 0571.35099 · doi:10.1143/JPSJ.50.3806
[2] Segal G., Inst. Hautes Etudes Sci. Publ. Math. 63 pp 1– (1989)
[3] DOI: 10.1063/1.522505 · doi:10.1063/1.522505
[4] DOI: 10.1002/cpa.3160470403 · Zbl 0811.58064 · doi:10.1002/cpa.3160470403
[5] DOI: 10.1002/cpa.3160470403 · Zbl 0811.58064 · doi:10.1002/cpa.3160470403
[6] DOI: 10.1007/BF02099286 · Zbl 0753.58039 · doi:10.1007/BF02099286
[7] DOI: 10.1007/BF02099286 · Zbl 0753.58039 · doi:10.1007/BF02099286
[8] DOI: 10.1142/S0217751X92004099 · Zbl 0925.35145 · doi:10.1142/S0217751X92004099
[9] DOI: 10.1063/1.526652 · Zbl 0555.53044 · doi:10.1063/1.526652
[10] DOI: 10.1063/1.528686 · Zbl 0718.53050 · doi:10.1063/1.528686
[11] DOI: 10.1016/0370-2693(90)90378-J · doi:10.1016/0370-2693(90)90378-J
[12] DOI: 10.1063/1.528788 · Zbl 0708.17024 · doi:10.1063/1.528788
[13] DOI: 10.1063/1.528788 · Zbl 0708.17024 · doi:10.1063/1.528788
[14] DOI: 10.1063/1.528788 · Zbl 0708.17024 · doi:10.1063/1.528788
[15] DOI: 10.1016/0370-2693(89)91191-X · doi:10.1016/0370-2693(89)91191-X
[16] DOI: 10.1016/0370-2693(89)91191-X · doi:10.1016/0370-2693(89)91191-X
[17] DOI: 10.1016/0370-2693(89)91191-X · doi:10.1016/0370-2693(89)91191-X
[18] DOI: 10.1016/0370-2693(92)91427-B · doi:10.1016/0370-2693(92)91427-B
[19] DOI: 10.1016/0370-2693(92)91427-B · doi:10.1016/0370-2693(92)91427-B
[20] Jimbo M., Physica 2 pp 306– (1981)
[21] Jimbo M., Physica 2 pp 407– (1981)
[22] DOI: 10.1007/BF00416506 · Zbl 0618.35107 · doi:10.1007/BF00416506
[23] DOI: 10.1007/BF00756579 · Zbl 0411.53012 · doi:10.1007/BF00756579
[24] DOI: 10.1007/BF00756579 · Zbl 0411.53012 · doi:10.1007/BF00756579
[25] DOI: 10.1007/BF01885498 · Zbl 0741.35083 · doi:10.1007/BF01885498
[26] DOI: 10.1016/0550-3213(92)90560-X · doi:10.1016/0550-3213(92)90560-X
[27] DOI: 10.1016/0550-3213(92)90560-X · doi:10.1016/0550-3213(92)90560-X
[28] DOI: 10.1016/0550-3213(92)90560-X · doi:10.1016/0550-3213(92)90560-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.